Log in

Extraction of gravitational wave signals with optimized convolutional neural network

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Gabbard et al. have demonstrated that convolutional neural networks can achieve the sensitivity of matched filtering in the recognization of the gravitational-wave signals with high efficiency [Phys. Rev. Lett. 120, 141103 (2018)]. In this work we show that their model can be optimized for better accuracy. The convolutional neural networks typically have alternating convolutional layers and max pooling layers, followed by a small number of fully connected layers. We increase the stride in the max pooling layer by 1, followed by a dropout layer to alleviate overfitting in the original model. We find that these optimizations can effectively increase the area under the receiver operating characteristic curve for various tests on the same dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016), ar**v: 1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  2. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116, 241103 (2016), ar**v: 1606.04855 [gr-qc]

    Article  ADS  Google Scholar 

  3. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170104: Observation of a 50-solar mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017), [Erratum: Phys. Rev. Lett. 121 (12), 129901 (2018)], ar**v: 1706.01812 [gr-qc]

    Article  ADS  Google Scholar 

  4. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170608: Observation of a 19-solarmass Binary Black Hole Coalescence, Astrophys. J. 851, L35 (2017), ar**v: 1711.05578 [astroph.HE]

    Article  ADS  Google Scholar 

  5. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett. 119, 141101 (2017), ar**v: 1709.09660 [gr-qc]

    Article  ADS  Google Scholar 

  6. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6, 041015 (2016) [erratum: Phys. Rev. X 8, 039903 (2018)], ar**v: 1606.04856 [gr-qc]

    Google Scholar 

  7. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, ar**v: 1811.12907 [astro-ph.HE] (2018)

  8. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), ar**v: 1710.05832 [gr-qc]

    Article  ADS  Google Scholar 

  9. G. González, A. Viceré, and L. Wen, Gravitational wave astronomy, Front. Phys. 8(6), 771 (2013)

    Article  ADS  Google Scholar 

  10. B. Zhang, The delay time of gravitational wave — gammaray burst associations, Front. Phys. 14, 64402 (2019), ar**v: 1905.00781 [astro-ph.HE]

    Article  ADS  Google Scholar 

  11. B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration), Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativ. 21(1), 3 (2018), ar**v: 1304.0670 [gr-qc]

    Article  ADS  Google Scholar 

  12. R. Zhang, P. Isola, and A. A. Efros, Colorful image colorization, ar**, ar**v: 1406.5679 (2014)

  13. A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60(6), 84 (2017)

    Article  Google Scholar 

  14. I. Kononenko, Machine learning for medical diagnosis: History, state of the art and perspective, Artif. Intell. Med. 23(1), 89 (2001)

    Article  Google Scholar 

  15. T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B. Schölkopf, Convwave: Searching for gravitational waves with fully convolutional neural nets, in: Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (2017)

  16. D. George and E. A. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97, 044039 (2018), ar**v: 1701.00008 [astro-ph.IM]

    Article  ADS  Google Scholar 

  17. D. George, H. Y. Shen, and E. A. Huerta, Deep transfer learning: A new deep learning glitch classification method for advanced LIGO, Phys. Rev. D 97, 101501(R) (2018), ar**v: 1706.07446 [gr-qc]

    Article  ADS  Google Scholar 

  18. D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018), ar**v: 1711.03121 [gr-qc]

    Article  ADS  Google Scholar 

  19. D. George, H. Y. Shen, and E. A. Huerta, Glitch classification and clustering for LIGO with deep transfer learning, Phys. Rev. D 97, 101501 (2018), ar**v: 1711.07468 [astroph.IM]

    Article  ADS  Google Scholar 

  20. D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation with LIGO data, in: NiPS Summer School 2017 Gubbio, Perugia, Italy, June 30-July 3, 2017 (2017), ar**v: 1711.07966 [gr-qc]

  21. H. Y. Shen, D. George, E. A. Huerta, and Z. Z. Zhao, Denoising gravitational waves using deep learning with recurrent denoising autoencoders, ar**v: 1711.09919 [gr-qc] (2017)

  22. H. Gabbard, M. Williams, F. Hayes, and C. Messenger, Matching matched filtering with deep networks for gravitational-wave astronomy, Phys. Rev. Lett. 120, 141103 (2018), ar**v: 1712.06041 [astro-ph.IM]

    Article  ADS  Google Scholar 

  23. X. R. Li, W. L. Yu, and X. L. Fan, A method of detecting gravitational wave based on time-frequency analysis and convolutional neural networks, ar**v: 1712.00356 [astro-ph.IM] (2017)

  24. X. L. Fan, J. Li, X. Li, Y. H. Zhong, and J. W. Cao, Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors, Sci. China Phys. Mech. Astron. 62, 969512 (2019), ar**v: 1811.01380 [astro-ph.IM]

    Article  ADS  Google Scholar 

  25. Z. J. Cao, H. Wang, and J. Y. Zhu, Initial study on the application of deep learning to the gravitational wave data analysis, J. Henan Norm. Univ. (Nat. Sci. Ed.) 46, 26 (2018)

    Google Scholar 

  26. T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf, Convolutional neural networks: A magic bullet for gravitational-wave detection? ar**v: 1904.08693 [astro-ph.IM] (2019)

  27. https://github.com/mj-will/intro2ml/blob/master/bbhexample.ipynb

  28. R. Biswas, L. Blackburn, J. Cao, R. Essick, K. A. Hodge, E. Katsavounidis, K. Kim, Y. M. Kim, E. O. Le Bigot, C. H. Lee, J. J. Oh, S. H. Oh, E. J. Son, Y. Tao, R. Vaulin, and X. Wang, Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data, Phys. Rev. D 88(6), 062003 (2013), ar**v: 1303.6984 [astro-ph.IM]

    Article  ADS  Google Scholar 

  29. D. George, H. Y. Shen, and E. A. Huerta, Glitch classification and clustering for LIGO with deep transfer learning, in: NiPS Summer School 2017 Gubbio, Perugia, Italy, June 30-July 3, 2017 (2017), ar**v: 1711.07468 [astro-ph.IM]

  30. M. Cavaglia, K. Staats, and T. Gill, Finding the origin of noise transients in LIGO data with machine learning, Commun. Comput. Phys. 25, 963 (2019), ar**v: 1812.05225 [physics.data-an]

    Article  MATH  Google Scholar 

  31. S. B. Coughlin, et al., Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning, Phys. Rev. D 99, 082002 (2019), ar**v: 1903.04058 [astroph.IM]

    Article  ADS  Google Scholar 

  32. M. Llorens-Monteagudo, T. F. Alejandro, J. Font, and A. Marquina, Classification of gravitational-wave glitches via dictionary learning, Class. Quant. Grav. 36, 075005 (2019), ar**v: 1811.03867 [astro-ph.IM]

    Article  ADS  MathSciNet  Google Scholar 

  33. B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration), Prospects for observing and localizing gravitational-wave transients with advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Rel. 21, 3 (2018), ar**v: 1304.0670 [gr-qc]

    Article  Google Scholar 

  34. S. Husa, S. Khan, M. Hannam, M. Prrer, F. Ohme, X. J. Forteza, and A. Boh, Frequency-domain gravitational waves from nonprecessing black-hole binaries (I): New numerical waveforms and anatomy of the signal, Phys. Rev. D 93, 044006 (2016), ar**v: 1508.07250 [gr-qc]

    Article  ADS  Google Scholar 

  35. S. Khan, S. Husa, M. Hannam, F. Ohme, M. Prrer, X. J. Forteza, and A. Boh, Frequency-domain gravitational waves from nonprecessing black-hole binaries (II): A phenomenological model for the advanced detector era, Phys. Rev. D 93, 044007 (2016), ar**v: 1508.07253 [gr-qc]

    Article  ADS  Google Scholar 

  36. LIGO Scientific Collaboration, LIGO Algorithm Library — LALSuite, free software (GPL) (2018)

  37. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R, Springer Texts in Statistics, Springer New York, 2013

    Google Scholar 

  38. B. D. Ripley and N. L. Hjort, Pattern Recognition and Neural Networks, 1st Ed., Cambridge University Press, New York, NY, USA, 1995

    Google Scholar 

  39. M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, ar**v: 1311.2901 (2013)

  40. T. Dozat, Incorporating nesterov momentum into Adam (2015)

  41. F. Chollet, et al., Keras, https://keras.io (2015)

  42. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15, 1929 (2014)

    MathSciNet  MATH  Google Scholar 

  43. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, Striving for simplicity: The all convolutional net, ar**v: 1412.6806 (2014)

  44. T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27(8), 861 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for providing constructive comments and suggestions to improve the quality of this paper. W. L. was supported by grants from NSFC (Grant Nos. 11647314 and 11847307). Q. G. H. was supported by grants from NSFC (Grant Nos. 11690021, 11575271, and 11747601), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB23000000 and XDA15020701), as well as Top-Notch Young Talents Program of China. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen or Qing-Guo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, HM., Lin, W., Chen, ZC. et al. Extraction of gravitational wave signals with optimized convolutional neural network. Front. Phys. 15, 14601 (2020). https://doi.org/10.1007/s11467-019-0936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0936-x

Keywords

Navigation