Log in

Strong Averaging Principle for a Class of Slow-fast Singular SPDEs Driven by α-stable Process

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the strong averaging principle is researched for a class of Hölder continuous drift slow-fast SPDEs with α-stable process by the Zvonkin’s transformation and the classical Khasminskii’s time discretization method. As applications, an example is also provided to explain our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bao J.H., Yin G., Yuan C.G., Two-time-scale stochastic partial differential equations driven by α-stable noises: averaging principles. Bernoulli, 2017, 23(1): 645–669

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertram R., Rubin J.E., Multi-timescale systems and fast-slow analysis. Math. Biosci., 2017, 287: 105–121

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogoliubov N.N., Mitropolsky Y.A., Asymptotic Methods in the Theory of Non-linear Oscillations. New York: Gordon and Breach Science Publishers, 1961

    Google Scholar 

  4. Bréhier C.E., Strong and weak orders in averaging for SPDEs. Stochastic Process. Appl., 2012, 122: 2553–2593

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerrai S., A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab., 2009, 19(3): 899–948

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerrai S., Freidlin M., Averaging principle for stochastic reaction-diffusion equations. Probab. Theory Related Fields, 2009, 144(1–2): 137–177

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y.L., Shi Y.H., Sun X.B., Averaging principle for slow-fast stochastic Burgers equation driven by α-stable process. Appl. Math. Lett., 2020, 103: 106199

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Prato G., Flandoli F., Pathwise uniqueness for a class of SPDEs in Hilbert spaces and applications. J. Funct. Anal., 2010, 259: 243–267

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Prato G., Flandoli F., Priola E., Röckner M., Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab., 2013, 41(5): 3306–3344

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong Z., Sun X.B., **ao H., Zhai J.L., Averaging principle for one dimensional stochastic Burgers equation. J. Differential Equations, 2018, 265(10): 4749–4797

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong Z., Xu L.H., Zhang X.C., Invariance measures of stochastic 2D Navier–Stokes equations driven by α-stable processes. Electron. Commun. Probab., 2011, 16: 678–688

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong Z., Xu L.H., Zhang X.C., Exponential ergodicity of stochastic Burgers equations driven by α-stable processes. J. Stat. Phys., 2014, 154(4): 929–949

    Article  MathSciNet  MATH  Google Scholar 

  13. E W., Engquist B., Multiscale modeling and computations. Notices Amer. Math. Soc., 2003, 50(9): 1062–1070

    MathSciNet  MATH  Google Scholar 

  14. Fu H.B., Wan L., Liu J.C., Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales. Stochastic Process. Appl., 2015, 125(8): 3255–3279

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao P., Averaging principle for multiscale stochastic Klein–Gordon–Heat system. J. Nonlinear Sci., 2019, 29(4): 1701–1759

    Article  MathSciNet  MATH  Google Scholar 

  16. Givon D., Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model. Simul., 2007, 6(2): 577–594

    Article  MathSciNet  MATH  Google Scholar 

  17. Harvey E., Kirk V., Wechselberger M., Sneyd J., Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci., 2011, 21: 639–683

    Article  MATH  Google Scholar 

  18. Khasminskii R.Z., On an averaging principle for Itô stochastic differential equations. Kibernetica, 1968, 4(3): 260–279

    Google Scholar 

  19. Krylov N.V., Röckner M., Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 2005, 131(2): 154–196

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuehn C., Multiple Time Scale Dynamics. Appl. Math. Sci., Cham: Springer, 2015

    Google Scholar 

  21. Liu D., Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci., 2010, 8(4): 999–1020

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu W., Röckner M., Sun X.B., **e Y.C., Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differential Equations, 2020, 268(6): 2910–2948

    Article  MathSciNet  MATH  Google Scholar 

  23. Marinelli C., Prévôt C., Röckner M., Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise. J. Funct. Anal., 2010, 258(2): 616–649

    Article  MathSciNet  MATH  Google Scholar 

  24. Pardoux E., Veretennikov A.Y., On the Poisson equation and diffusion approximation. I. Ann. Probab., 2001, 29(3): 1061–1085

    MathSciNet  MATH  Google Scholar 

  25. Pardoux E., Veretennikov A.Y., On the Poisson equation and diffusion approximation 2. Ann. Probab., 2003, 31(3): 1166–1192

    Article  MathSciNet  MATH  Google Scholar 

  26. Pei B., Xu Y., Wu J.L., Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: existence, uniqueness and averaging principles. J. Math. Anal. Appl., 2017, 447(1): 243–268

    Article  MathSciNet  MATH  Google Scholar 

  27. Pei B., Xu Y., Wu J.L., Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Appl. Math. Lett., 2020, 100: 106006

    Article  MathSciNet  MATH  Google Scholar 

  28. Pei B., Xu Y., Yin G., Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations. Nonlinear Anal., 2017, 160: 159–176

    Article  MathSciNet  MATH  Google Scholar 

  29. Priola E., Zabczyk J., Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields, 2011, 149(1–2): 97–137

    Article  MathSciNet  MATH  Google Scholar 

  30. Röckner M., Sun X.B., **e L.J., Strong and weak convergence in the averaging principle for SDEs with Hölder coefficients. 2019, ar**v:1907.09256

  31. Röckner M., Sun X.B., **e Y.C., Strong convergence order for slow-fast McKean–Vlasov stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat., 2021, 57(1): 547–576

    Article  MathSciNet  MATH  Google Scholar 

  32. Röckner M., **e L.J., Yang L., Asymptotic behavior of multiscale stochastic partial differential equations. 2020, ar**v:2010.14897

  33. Sun X.B., **e L.J., **e Y.C., Pathwise uniqueness for a class of SPDEs driven by cylindrical α-stable processes. Potential Anal., 2020, 53: 659–675

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun X.B., **e L.J., **e Y.C., Averaging principle for slow-fast stochastic partial differential equations with Hölder continuous coefficients. J. Differential Equations, 2021, 270: 476–504

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun X.B., Zhai J.L., Averaging principle for stochastic real Ginzburg–Landau equation driven by α-stable process. Commun. Pure Appl. Anal., 2020, 19(3): 1291–1319

    Article  MathSciNet  MATH  Google Scholar 

  36. Veretennikov A.Y., On the averaging principle for systems of stochastic differential equations. Math. USSR Sb., 1991, 69(1): 271–284

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang W., Roberts A.J., Duan J.Q., Large deviations and approximations for slow-fast stochastic reaction-diffusion equations. J. Differential Equations, 2012, 253(12): 3501–3522

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu L., Ergodicity of the stochastic real Ginzburg–Landau equation driven by α-stable noises. Stochastic Process. Appl., 2013, 123(10): 3710–3736

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu Y., Pei B., Wu J.L., Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion. Stoch. Dyn., 2017, 17(2): 1750013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12271219, 11931004, 12090010, 12090011), Graduate Research and Innovation Program in Jiangsu Province (No. KYCX20_2204), the QingLan Project of Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., **a, H., **e, Y. et al. Strong Averaging Principle for a Class of Slow-fast Singular SPDEs Driven by α-stable Process. Front. Math 18, 565–590 (2023). https://doi.org/10.1007/s11464-021-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0069-8

Keywords

MSC2020

Navigation