Log in

Stereomeric effects of bisPC71BM on polymer solar cell performance

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

Two stereomers of bisadduct analogues of [6, 6]-phenyl-C71-butyric acid methyl ester (bisPC71BM) were synthesized and their geometrical structures with cis- or trans-configuration were identified by X-ray crystallography. Although both of the bisPC71BM have similar spectrometric and electrochemical properties, the spatial orientation of the two addition groups on C70 has impact on crystal packing and molecular assembly of bisPC71BM isomers and, in turn, photovoltaic performance in polymer solar cell based on poly(3-hexylthiophene) (P3HT) (with power conversion efficiency of 1.72 % and 1.84 % for the solar cells involving cis- and trans-bisPC71BM, respectively). Although the power conversion efficiency remains to be improved, this work exemplifies that the photovoltaic properties of fullerene-based electron acceptors are influenced by aggregation of the stereomeric molecules and thus extends the guidelines for rational design of efficient fullerene acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  2. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412

    Article  Google Scholar 

  3. He ZC, Zhong CM, Su SJ et al (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595

    Google Scholar 

  4. Chen CC, Chang WH, Yoshimura K et al (2014) An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater 26:5670–5677

    Article  Google Scholar 

  5. Gendron D, Leclerc M (2011) New conjugated polymers for plastic solar cells. Energy Environ Sci 4:1225–1237

    Article  Google Scholar 

  6. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161

    Article  Google Scholar 

  7. Duan CH, Huang F, Cao Y (2012) Recent development of push-pull conjugated polymers for bulk- heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem 22:10416–10434

    Article  Google Scholar 

  8. Li YF (2012) Molecular design of photovoltaic materials for polymer solar cells: electronic energy levels and broad absorption. Acc Chem Res 45:723–733

    Article  Google Scholar 

  9. He YJ, Li YF (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13:1970–1983

    Article  Google Scholar 

  10. Li CZ, Yip HL, Jen AKY (2012) Functional fullerenes for organic photovoltaics. J Mater Chem 22:4161–4177

    Article  Google Scholar 

  11. Lai YY, Cheng YJ, Hsu CS (2014) Applications of functional fullerene materials in polymer solar cells. Energy Environ Sci 7:1866–1883

    Article  Google Scholar 

  12. Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538

    Article  Google Scholar 

  13. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  Google Scholar 

  14. Wienk MM, Kroon JM, Verhees WJH et al (2003) Efficient methano-[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375

    Article  Google Scholar 

  15. Reed CA, Bolskar RD (2000) Discrete fulleride anions and fullerenium cations. Chem Rev 100:1075–1119

    Article  Google Scholar 

  16. Imahori H, Hagiwara K, Akiyama T et al (1996) The small reorganization energy of C60 in electron transfer. Chem Phys Lett 263:545–550

    Article  Google Scholar 

  17. Li CZ, Chueh CC, Yip HL et al (2012) Evaluation of structure-property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance. J Mater Chem 22:14976–14981

    Article  Google Scholar 

  18. Deng SL, Tan YZ, **e SY (2011) Synthetic chemistry of fullerenes. In: Xu RR, Pang WQ, Huo QS (eds) Modern inorganic synthetic chemistry. Elsevier, Amsterdam, pp 249–267

    Chapter  Google Scholar 

  19. Ross RB, Cardona CM, Guldi DM et al (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8:208–212

    Article  Google Scholar 

  20. Troshin PA, Hoppe H, Peregudov AS et al (2011) [70]Fullerene-based materials for organic solar cells. ChemSusChem 4:119–124

    Article  Google Scholar 

  21. **ao Z, Matsuo Y, Soga I et al (2012) Structurally defined high-LUMO-level 66π-[70]fullerene derivatives: synthesis and application in organic photovoltaic cells. Chem Mater 24:2572–2582

    Article  Google Scholar 

  22. He YJ, Chen HY, Hou JH et al (2010) Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382

    Article  Google Scholar 

  23. He YJ, Zhao GJ, Peng B et al (2010) High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct. Adv Funct Mater 20:3383–3389

    Article  Google Scholar 

  24. Matsuo Y, Sato Y, Niinomi T et al (2009) Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl-[60]fullerene. J Am Chem Soc 131:16048–16050

    Article  Google Scholar 

  25. Frost JM, Faist MA, Nelson J (2010) Energetic disorder in higher fullerene adducts: a quantum chemical and voltammetric study. Adv Mater 22:4881–4884

    Article  Google Scholar 

  26. Miller NC, Sweetnam S, Hoke ET et al (2012) Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene. Nano Lett 12:1566–1570

    Article  Google Scholar 

  27. Lenes M, Wetzelaer GJAH, Kooistra FB et al (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119

    Article  Google Scholar 

  28. Kim KH, Kang H, Nam SY et al (2011) Facile synthesis of o-xylenyl fullerene multiadducts for high open circuit voltage and efficient polymer solar cells. Chem Mater 23:5090–5095

    Article  Google Scholar 

  29. Voroshazi E, Vasseur K, Aernouts T et al (2011) Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells. J Mater Chem 21:17345–17352

    Article  Google Scholar 

  30. Meng XY, Zhang WQ, Tan ZA et al (2012) Dihydronaphthyl-based [60]fullerene bisadducts for efficient and stable polymer solar cells. Chem Commun 48:425–427

    Article  Google Scholar 

  31. Meng XY, Zhang WQ, Tan ZA et al (2012) Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70]fullerene bisadduct derivative as the acceptor. Adv Funct Mater 22:2187–2193

    Article  Google Scholar 

  32. Zhang CY, Chen S, **ao Z et al (2012) Synthesis of mono- and bisadducts of thieno-o-quinodimethane with C60 for efficient polymer solar cells. Org Lett 14:1508–1511

    Article  Google Scholar 

  33. Kitaura S, Kurotobi K, Sato M et al (2012) Effects of dihydronaphthyl-based [60]fullerene bisadduct regioisomers on polymer solar cell performance. Chem Commun 48:8550–8552

    Article  Google Scholar 

  34. Meng XY, Zhao GY, Xu Q et al (2014) Effects of fullerene bisadduct regioisomers on photovoltaic performance. Adv Funct Mater 24:158–163

    Article  Google Scholar 

  35. Zhao F, Meng X, Feng Y et al (2015) Single crystalline indene-C60 bisadduct: isolation and application in polymer solar cells. J Mater Chem A 3:14991–14995

    Article  Google Scholar 

  36. Wu WP, Deng LL, Li X et al (2015) Theoretical insight into the stereometric effect of bisPC71BM on polymer cell performance. Sci Bull. doi:10.1007/s11434-015-0984-8

  37. Deng LL, **e SY, Huang RB et al (2015) Research progress in perovskite solar cell materials and devices. J **amen Univ Nat Sci 54:619–629

    Google Scholar 

  38. Nakamura Y, O-kawa K, Matsumoto M et al (2000) Separation and characterization of [60]fullerene bisadducts modified by 4,5-dimethoxy-o-quinodimethane. Tetrahedron 56:5429–5434

    Article  Google Scholar 

  39. Nakamura Y, Takano N, Nishimura T et al (2001) First isolation and characterization of eight regioisomers for [60]fullerene-benzyne bisadducts. Org Lett 3:1193–1196

    Article  Google Scholar 

  40. Sun QJ, Wang HQ, Yang CH et al (2003) Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J Mater Chem 13:800–806

    Article  Google Scholar 

  41. Rispens MT, Meetsma A, Rittberger R et al (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM plastic’ solar cells. Chem Commun (17):2116–2118

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2014CB845601), the National Natural Science Foundation of China (U1205111, 21390390, 51572231, and 51502252), and the Fundamental Research Funds for the Central Universities (20720140512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yuan **e.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Lin-Long Deng and **ang Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7862 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, LL., Li, X., Wang, S. et al. Stereomeric effects of bisPC71BM on polymer solar cell performance. Sci. Bull. 61, 132–138 (2016). https://doi.org/10.1007/s11434-015-0979-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0979-5

Keywords

Navigation