Log in

Enhanced electrochemical stimuli multilayers based on a ferrocene-containing polymer

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

Based on the noncovalent functionalization of ferrocene-grafted polyethylenimine (PEI-Fc) and carbon nanotubes (CNTs), CNT bundles are exfoliated by PEI-Fc solution and thus form stable compounds PEI-Fc@CNTs, which is used to construct the PEI-Fc@CNTs/DNA multilayers through layer-by-layer assembly. The multilayers show a highly uniform and homogeneous characteristic, which significantly improve the electrical property of the multilayers. Upon the oxidation electrical potential, the ferrocene groups are switched from reduction state ([Fe(C5H5)2]) to oxidation state ([Fe(C5H5)2]+), leading to change of microenvironments’ charge density, resulting in swelling of the multilayers and a final degree of swelling of 37 % and the decrease of multilayer stiffness. We maintain that electrochemical control over the swelling behavior of multilayers could have important implications for responsive coatings of nanoscale devices, including mechanically tunable surfaces which are used to modulate cellular activities and control drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldman R, Pollack S (1996) Electric fields and proliferation in a chronic wound model. Bioelectromagnetics 17:450–457

    Article  Google Scholar 

  2. Ciombor DM, Aaron RK (1993) Influence of electromagnetic fields on endochondral bone formation. J Cell Biochem 52:37–41

    Article  Google Scholar 

  3. Politis MJ, Zanakis MF (1989) The short-term effects of delayed application of electric fields in the damaged rodent spinal cord. Neurosurgery 25:71–75

    Article  Google Scholar 

  4. Hou C, Duan Y, Zhang Q et al (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22:14991–14996

    Article  Google Scholar 

  5. Liu Y, Hu J, Zhuang X et al (2012) Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol Biosci 12:241–250

    Article  Google Scholar 

  6. Shang J, Shao Z, Chen X (2008) Chitosan-based electroactive hydrogel. Polymer 49:5520–5525

    Article  Google Scholar 

  7. Cui HT, Wang Y, Cui L G et al (2014) In vitro studies on regulation of osteogenic activities by electrical stimulus on biodegradable electroactive polyelectrolyte multilayers. Biomacromolecules 15:3146–3157

  8. Sun YX, Ren KF, Zhao YX et al (2013) Construction of redox-active multilayer film for electrochemically controlled release. Langmuir 29:11163–11168

    Article  Google Scholar 

  9. Sun YX, Ren KF, Wang JL et al (2013) Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion. ACS Appl Mater Interfaces 5:4597–4602

    Article  Google Scholar 

  10. Guo CX, Yang HB, Sheng ZM et al (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017

    Article  Google Scholar 

  11. Lin Y, Taylor S, Li H et al (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527–541

    Article  Google Scholar 

  12. Artyukhin AB, Shestakov A, Harper J et al (2005) Functional one-dimensional lipid bilayers on carbon nanotube templates. J Am Chem Soc 127:7538–7542

    Article  Google Scholar 

  13. Li J, Srivastava S, Ok JG et al (2011) Multidirectional hierarchical nanocomposites made by carbon nanotube growth within layer-by-layer-assembled films. Chem Mater 23:1023–1031

    Article  Google Scholar 

  14. Yuan J, Wang Z, Zhang Y et al (2008) Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: a tunable catalyst film for anodic methanol oxidation. Thin Solid Films 516:6531–6535

    Article  Google Scholar 

  15. Mamedov AA, Kotov NA, Prato M et al (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194

    Article  Google Scholar 

  16. Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123–1128

    Article  Google Scholar 

  17. Jan E, Pereira FN, Turner DL et al (2011) In situ gene transfection and neuronal programming on electroconductive nanocomposite to reduce inflammatory response. J Mater Chem 21:1109–1114

    Article  Google Scholar 

  18. Cai X, Gao X, Wang L et al (2013) A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensor Actuat B Chem 181:575–583

    Article  Google Scholar 

  19. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397

    Article  Google Scholar 

  20. Zhu L, Shangguan Y, Sun Y et al (2010) Rheological properties of redox-responsive, associative ferrocene-modified branched poly (ethylene imine) and its modulation by β-cyclodextrin and hydrogen peroxide. Soft Matter 6:5541–5547

    Article  Google Scholar 

  21. Yuan WZ, Sun JZ, Liu JZ et al (2008) Processable hybrids of ferrocene-containing poly (phenylacetylene) s and carbon nanotubes: fabrication and properties. J Phys Chem B 112:8896–8905

    Article  Google Scholar 

  22. Yuan WZ, Sun JZ, Dong Y et al (2006) Wrap** carbon nanotubes in pyrene-containing poly (phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules 39:8011–8020

    Article  Google Scholar 

  23. Moya SE, Ilie A, Bendall JS et al (2007) Assembly of polyelectrolytes on CNTs by van der Waals interactions and fabrication of LBL polyelectrolyte/CNT composites. Macromol Chem Phys 208:603–608

    Article  Google Scholar 

  24. Mamedov AA, Kotov NA, Prato M et al (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194

    Article  Google Scholar 

  25. Mulchandani A, Wang CL, Weetall HH (1995) Amperometric detection of peroxides with poly (anilinomethylferrocene)-modified enzyme electrodes. Anal Chem 67:94–100

    Article  Google Scholar 

  26. Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800

    Article  Google Scholar 

  27. Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem 14:437–439

    Article  Google Scholar 

  28. Grieshaber D, Voros J, Zambelli T et al (2008) Swelling and contraction of ferrocyanide-containing polyelectrolyte multilayers upon application of an electric potential. Langmuir 24:13668–13676

    Article  Google Scholar 

  29. Schmidt DJ, Cebeci FC, Kalcioglu ZI et al (2009) Electrochemically controlled swelling and mechanical properties of a polymer nanocomposite. ACS Nano 3:2207–2216

    Article  Google Scholar 

  30. Forzani ES, Pérez MA, Teijelo ML et al (2002) Redox driven swelling of layer-by-layer enzyme-polyelectrolyte multilayers. Langmuir 18:9867–9873

  31. Zahn R, Vörös J, Zambelli T (2010) Swelling of electrochemically active polyelectrolyte multilayers. Curr Opin Colloid Interface Sci 15:427–434

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21174126, 51333005, 21374095), the National Basic Research Program of China (2011CB606203), Research Fund for the Doctoral Program of Higher Education of China (20110101110037, 20120101130013), the Qianjiang Excellence Project of Zhejiang Province (2013R10035), and International Science & Technology Cooperation Program of China (2014DFG52320).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Feng Ren or Jian Ji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 345 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YX., Ren, KF., Chang, GX. et al. Enhanced electrochemical stimuli multilayers based on a ferrocene-containing polymer. Sci. Bull. 60, 936–942 (2015). https://doi.org/10.1007/s11434-015-0780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0780-5

Keywords

Navigation