Log in

Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains: implications for the destruction of the North China Craton

  • Letter
  • Geology
  • Published:
Chinese Science Bulletin

Abstract

Based on studies of the water content of the early Cretaceous Feixian high-magnesium basalts in the eastern part of the North China Craton (NCC), it has been suggested that the early Cretaceous lithospheric mantle of the eastern NCC was highly hydrous (>1,000 ppm, H2O wt.) and that this high water content had significantly reduced the viscosity of the lithospheric mantle and provided a prerequisite for the destruction of the NCC. The eastern part of the NCC had undergone multistage subduction of oceanic plates from the south, north, and east sides since the early Paleozoic, and these events may have caused the strong hydration of the NCC lithospheric mantle. To determine which subduction had contributed most to this hydration, we measured the water contents of the peridotite xenoliths hosted by the early Cretaceous high-magnesium diorites of Fushan in the south-central part of the Taihang Mountains. Our results demonstrate that the water content of the early Cretaceous lithospheric mantle beneath the south part of the Taihang Mountains was ~40 ppm and significantly lower than that of the contemporary lithospheric mantle beneath the eastern part of the NCC. Thus, the hydration of the early Cretaceous lithospheric mantle of the eastern part of the NCC can be ascribed to the subduction of the Pacific plate from the west side. Thus, the main dynamic factor in the destruction of the NCC was likely the subduction of the Pacific plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. **a QK, Liu J, Liu SC et al (2013) Earth Planet Sci Lett 361:85–97

    Article  Google Scholar 

  2. Dixon JE, Dixon TH, Bell DR et al (2004) Earth Planet Sci Lett 222:451–467

    Article  Google Scholar 

  3. Li ZXA, Lee CT, Peslier AH et al (2008) J Geophys Res 113:B0921010. doi:10.1029/2007JB005540

    Google Scholar 

  4. Peslier AH, Woodland AB, Bell DR et al (2010) Nature 467:78–108

    Article  Google Scholar 

  5. Menzies MA, Xu YG, Zhang HF et al (2007) Lithos 96:1–21

    Article  Google Scholar 

  6. Fan WM, Menzies MA (1992) Geotecton Metallog 16:171–180

    Google Scholar 

  7. Windley BF, Maruyama S, **ao WJ (2010) Am J Sci 310:1250–1293

    Article  Google Scholar 

  8. Huang JL, Zhao D (2006) J Geophys Res 111:B09305. doi:10.1029/2005JB004066

    Google Scholar 

  9. Xu W, Yang D, Gao S et al (2010) Chem Geol 270:257–273

    Article  Google Scholar 

  10. Liu JG, Rudnick RL, Walker RJ et al (2011) Geochim Cosmochim Acta 75:3881–3902

    Article  Google Scholar 

  11. **a QK, Hao YT, Li P et al (2010) J Geophys Res 115:B07207. doi:10.1029/2009JB006694

    Google Scholar 

  12. Kovács I, Hermann J, O’Neill HSC et al (2008) Am Miner 93:765–778

    Article  Google Scholar 

  13. Bell DR, Rossman GR (1992) Science 255:1391–1397

    Article  Google Scholar 

  14. Peslier AH, Luhr JF, Post J (2002) Earth Planet Sci Lett 201:69–86

    Article  Google Scholar 

  15. Hauri EH, Gaetani GA, Green TH (2006) Earth Planet Sci Lett 248:715–734

    Article  Google Scholar 

  16. Aubaud C, Withers AC, Hirschmann MM et al (2007) Am Miner 92:811–828

    Article  Google Scholar 

  17. Grant K, Ingrin J, Lorand JP et al (2007) Contrib Miner Pet 154:15–34

    Article  Google Scholar 

  18. Tenner TJ, Hirschmann MM, Withers AC et al (2009) Chem Geol 262:42–56

    Article  Google Scholar 

  19. **a QK, Hao YT, Liu SC et al (2013) Gondwana Res 23:108–118

    Article  Google Scholar 

  20. Kovács I, Green DH, Rosenthal A et al (2012) J Pet 53:2067–2093

    Article  Google Scholar 

  21. Demouchy S, Jacobsen SD, Gaillard F et al (2006) Geology 34:429–432

    Article  Google Scholar 

  22. Peslier AH, Luhr JF (2006) Earth Planet Sci Lett 242:302–319

    Article  Google Scholar 

  23. Peslier AH, Woodland AB, Wolff JA (2008) Geochim Cosmochim Acta 72:2711–2722

    Article  Google Scholar 

  24. Peslier AH, Woodland AB, Bell DR et al (2012) Geochim Cosmochim Acta 97:213–246

    Article  Google Scholar 

  25. Baptiste V, Tommasi A, Demouchy S (2012) Lithos 149:31–50

    Article  Google Scholar 

  26. Karato SI (2010) Tectonophysics 481:82–98

    Article  Google Scholar 

  27. Zhang JJ, Zheng YF, Zhao ZF (2009) Lithos 110:305–326

    Article  Google Scholar 

  28. Zhu RX, Xu YG, Zhu G et al (2012) Sci China Earth Sci 55:1565–1587

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Wenliang Xu for providing the Fushan samples and three anonymous reviewers, and the editor for constructive comments. This work was supported by the National Natural Science Foundation of China (91014007 and 41225005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunke **a.

About this article

Cite this article

Liu, S., **a, Q. Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains: implications for the destruction of the North China Craton. Chin. Sci. Bull. 59, 1362–1365 (2014). https://doi.org/10.1007/s11434-014-0203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0203-z

Keywords

Navigation