Log in

Five-channel frequency-division multiplexing using low-loss epsilon-near-zero metamaterial waveguide

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The rapidly growing global data usage has demanded more efficient ways to utilize the scarce electromagnetic spectrum resource. Recent research has focused on the development of efficient multiplexing techniques in the millimeter-wave band (1–10 mm, or 30–300 GHz) due to the promise of large available bandwidth for future wireless networks. Frequency-division multiplexing is still one of the most commonly-used techniques to maximize the transmission capacity of a wireless network. Based on the frequency-selective tunnelling effect of the low-loss epsilon-near-zero metamaterial waveguide, we numerically and experimentally demonstrate five-channel frequency-division multiplexing and demultiplexing in the millimeter-wave range. We show that this device architecture offers great flexibility to manipulate the filter Q-factors and the transmission spectra of different channels, by changing of the epsilon-near-zero metamaterial waveguide topology and by adding a standard waveguide between two epsilon-near-zero channels. This strategy of frequency-division multiplexing may pave a way for efficiently allocating the spectrum for future communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjoland, and F. Tufvesson, Proc. IEEE 109, 1166 (2021).

    Article  Google Scholar 

  2. M. J. Marcus, Proc. IEEE 100, 1685 (2012).

    Article  Google Scholar 

  3. J. Shi, W. Qiao, J. Hua, R. Li, and L. Chen, Nanophotonics 9, 3003 (2020).

    Article  Google Scholar 

  4. C. Feng, Z. Ying, Z. Zhao, J. Gu, D. Z. Pan, and R. T. Chen, Nanophotonics 9, 4579 (2020).

    Article  Google Scholar 

  5. S. Iqbal, H. Rajabalipanah, L. Zhang, X. Qiang, A. Abdolali, and T. J. Cui, Nanophotonics 9, 703 (2020).

    Article  Google Scholar 

  6. I. Robertson, N. Somjit, and M. Chongcheawchamnan, Microwave and Millimetre-Wave Design for Wireless Communications (John Wiley & Sons, Chichester, 2016).

    Google Scholar 

  7. M. Steer, Microwave and RF Design (NC State University, Raleigh, 2019).

    Google Scholar 

  8. E. Cianca, T. Rossi, A. Yahalom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).

    Article  Google Scholar 

  9. S. A. Busari, S. Mumtaz, S. Al-Rubaye, and J. Rodriguez, IEEE Commun. Mag. 56, 137 (2018).

    Article  Google Scholar 

  10. A. A. Penzias, and C. A. Burrus, Annu. Rev. Astron. Astrophys. 11, 51 (1973).

    Article  ADS  Google Scholar 

  11. R. Appleby, and R. N. Anderton, Proc. IEEE 95, 1683 (2007).

    Article  Google Scholar 

  12. Y. Shih, L. Q. Bui, and T. Itoh, IEEE Trans. Microwave Theor. Tech. 33, 1465 (1985).

    Article  ADS  Google Scholar 

  13. Y Rong, H.-W. Yao, K. A. Zaki, and T. G. Dolan, IEEE Trans. Microwave Theor. Tech. 47, 2325 (1999).

    Article  ADS  Google Scholar 

  14. C. C. W. Ruppel, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64, 1390 (2017).

    Article  Google Scholar 

  15. M. Yata, M. Fujita, and T. Nagatsuma, Opt. Express 24, 7835 (2016).

    Article  ADS  Google Scholar 

  16. B. Naghdi, and L. R. Chen, IEEE Photonics J. 10, 1 (2018).

    Article  Google Scholar 

  17. L. Liu, H. Guan, Y. Liu, L. Chang, Y. Kuang, M. Tan, Y. Yu, and Z. Li, IEEE Photon. Technol. Lett. 31, 451 (2019).

    Article  ADS  Google Scholar 

  18. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).

    Article  ADS  Google Scholar 

  19. H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, and X. X. Zhang, Appl. Opt. 40, 6307 (2001).

    Article  ADS  Google Scholar 

  20. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).

    Article  ADS  Google Scholar 

  21. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1984).

    Book  Google Scholar 

  22. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, Optica 2, 616 (2015).

    Article  ADS  Google Scholar 

  23. N. C. Passler, I. Razdolski, D. S. Katzer, D. F. Storm, J. D. Caldwell, M. Wolf, and A. Paarmann, ACS Photon. 6, 1365 (2019).

    Article  Google Scholar 

  24. G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1, 1090 (2011), ar**v: 1108.0993.

    Article  ADS  Google Scholar 

  25. A. Alù, and N. Engheta, Phys. Rev. Lett. 103, 043902 (2009).

    Article  ADS  Google Scholar 

  26. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, Phys. Rev. Lett. 110, 013902 (2013).

    Article  ADS  Google Scholar 

  27. Y. He, Y. Li, Z. Zhou, H. Li, Y. Hou, S. Liao, and P. Chen, Adv. Theor. Simul. 2, 1900059 (2019).

    Article  Google Scholar 

  28. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, Phys. Rev. Lett. 102, 127405 (2009).

    Article  ADS  Google Scholar 

  29. I. Liberal, Y. Li, and N. Engheta, Nanophotonics 7, 1117 (2018).

    Article  Google Scholar 

  30. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, Appl. Phys. Lett. 97, 131107 (2010).

    Article  ADS  Google Scholar 

  31. J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, Appl. Phys. Lett. 103, 051111 (2013), ar**v: 1307.1880.

    Article  ADS  Google Scholar 

  32. R. Maas, J. Parsons, N. Engheta, and A. Polman, Nat. Photon. 7, 907 (2013).

    Article  ADS  Google Scholar 

  33. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, Nat. Photon. 9, 738 (2015).

    Article  ADS  Google Scholar 

  34. Y. Li, C. T. Chan, and E. Mazur, Light Sci. Appl. 10, 203 (2021).

    Article  ADS  Google Scholar 

  35. MTT/SCC-Standards Coordinating Committee, IEEE 1785.1-2012: IEEE Standard for Rectangular Metallic Waveguides and Their Interfaces for Frequencies of 110 GHz and Above—Part 1: Frequency Bands and Waveguide Dimensions, IEEE Standard, IEEE, 2013.

  36. M. G. Silveirinha, and N. Engheta, Phys. Rev. B 76, 245109 (2007), ar**v: 0705.2612.

    Article  ADS  Google Scholar 

  37. D. V. B. Murthy, A. Corona-Chavez, and J. L. Olvera Cervantes, PIER C 15, 65 (2010).

    Article  Google Scholar 

  38. N. Vojnovic, B. Jokanovic, M. Radovanovic, F. Medina, and F. Mesa, IEEE Trans. Antennas Propagat. 63, 5107 (2015).

    Article  ADS  Google Scholar 

  39. M. Radovanovic, and B. Jokanovic, IEEE Microw. Wireless Compon. Lett. 27, 554 (2017).

    Article  Google Scholar 

  40. A. Corona-Chavez, D. V. B. Murthy, and J. L. Olvera-Cervantes, Microw. Opt. Technol. Lett. 53, 1706 (2011).

    Article  Google Scholar 

  41. V. Pacheco-Peña, M. Beruete, P. Rodríguez-Ulibarri, and N. Engheta, New J. Phys. 21, 043056 (2019).

    Article  ADS  Google Scholar 

  42. H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chavez, J. L. Olvera-Cervantes, J. Martinez-Brito, and L. G. Guerrero-Ojeda, IEEE Trans. Microwave Theor. Tech. 59, 1863 (2011).

    Article  ADS  Google Scholar 

  43. Y. Wang, Z. Sun, and P. Xu, J. Phys. D-Appl. Phys. 50, 465104 (2017).

    Article  Google Scholar 

  44. T. G. Folland, G. Lu, A. Bruncz, J. R. Nolen, M. Tadjer, and J. D. Caldwell, ACS Photon. 7, 614 (2020).

    Article  Google Scholar 

  45. A. Alu, and N. Engheta, IEEE Trans. Antennas Propag. 58, 328 (2009).

    Article  ADS  Google Scholar 

  46. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, Optica 3, 339 (2016).

    Article  ADS  Google Scholar 

  47. D. M. George, A. Chandroth, C. C. H. Ng, and P. R. Young, J. Phys. D-Appl. Phys. 51, 135102 (2018).

    Article  ADS  Google Scholar 

  48. X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, ACS Photon. 5, 4484 (2018).

    Article  Google Scholar 

  49. W. Rotman, IRE Trans. Antennas Propag. 10, 82 (1962).

    Article  ADS  Google Scholar 

  50. B. Hong, L. Sun, G. P. Wang, R. Richardson, N. Chudpooti, I. D. Robertson, and N. Somjit, in Millimeter-wave dual-function hollow metal waveguide to microstrip transition and bandpass filter based on ENZ metamaterial: Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, 2019, pp. 1–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo ** Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11734012, 62105213, 12074267, 516022053, and 12174265), the Young Innovative Talents Project of Universities in Guangdong Province (Grant No. 2019KQNCX123), the Guangdong Basic and Applied Basic Research Fund (Grant No. 2020A1515111037), the Science and Technology Project of Guangdong (Grant No. 2020B010190001), the Guangdong Natural Science Foundation (Grant No. 2020A1515010467), the Shenzhen Fundamental Research Program (Grant No. 20200814113625003), and the Open Fund of State Key Laboratory of Applied Optics (Grant No. SKLAO2020001A06). The authors thank Lei Ge and Shuai Gao for their help during the measurement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, B., Sun, L., Wang, W. et al. Five-channel frequency-division multiplexing using low-loss epsilon-near-zero metamaterial waveguide. Sci. China Phys. Mech. Astron. 65, 274211 (2022). https://doi.org/10.1007/s11433-021-1901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1901-0

Navigation