Log in

Numerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow deceleration on the phase inversion (RTPI) is highlighted. The RTPI was firstly observed in our previous experiment, but the related mechanism remains unclear. By isolating the three-dimensional effect, it is found here that the initial amplitude (a0), the azimuthal mode number (k0) and the re-shocking moment are the three major parameters which determine the RTPI occurrence. In the variable space of (k0, a0), a critical a0 for the RTPI occurrence is solved for each k0, and there exists a threshold value of k0 below which the RTPI will not occur no matter what a0 is. There exists a special k0 corresponding to the largest critical a0, and the reduction rule of critical a0 with k0 can be well described by an exponential decay function. The results show that the occurrence of the RTPI requires a small a0 which should be less than a critical value, a large k0 which should exceed a threshold, and a right im**ing moment of the re-shock which should be later than the RTPI occurrence. Finally, the effects of the incident shock strength, the density ratio and the initial position of the interface on the threshold value of k0 and on the maximum critical a0 are examined. These new findings would facilitate the understanding of the converging Richtmyer-Meshkov instability and would be helpful for designing an optimal structure of the inertia confinement fusion capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Richtmyer, Comm. Pure Appl. Math. 13, 297 (1960).

    Article  MathSciNet  Google Scholar 

  2. E. E. Meshkov, Fluid Dyn. 4, 101 (1972).

    Article  ADS  Google Scholar 

  3. J. Lindl, O. Landen, J. Edwards, and E. Moses, Phys. Plasmas 21, 020501 (2014).

    Article  ADS  Google Scholar 

  4. J. Yang, T. Kubota, and E. E. Zukoski, J. Fluid Mech. 258, 217 (1994).

    Article  ADS  Google Scholar 

  5. W. Arnett, J. Bahcall, R. Kirshner, and S. Woosley, Annu. Rev. Astron. Astrophys. 27, 629 (1989).

    Article  ADS  Google Scholar 

  6. G. Taylor, Proc. R. Soc. Lond. A 201, 192 (1950).

    Article  ADS  Google Scholar 

  7. O. Sadot, L. Erez, U. Alon, D. Oron, L. A. Levin, G. Erez, G. Ben-Dor, and D. Shvarts, Phys. Rev. Lett. 80, 1654 (1998).

    Article  ADS  Google Scholar 

  8. N. J. Zabusky, Annu. Rev. Fluid Mech. 31, 495 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Brouillette, Annu. Rev. Fluid Mech. 34, 445 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. B. D. Collins, and J. W. Jacobs, J. Fluid Mech. 464, 113 (2002).

    Article  ADS  Google Scholar 

  11. Y. Liang, Z. G. Zhai, and X. S. Luo, Sci. China-Phys. Mech. Astron. 61, 064711 (2018).

    Article  ADS  Google Scholar 

  12. Z. Wu, S. Huang, J. Ding, W. Wang, and X. Luo, Sci. China-Phys. Mech. Astron. 61, 114712 (2018).

    Article  ADS  Google Scholar 

  13. G. Bell, Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation, Technical Report LA-1321 (Los Alamos National Laboratory, Los Alamos, 1951).

    Google Scholar 

  14. M. S. Plesset, J. Appl. Phys. 25, 96 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  15. K. O. Mikaelian, Phys. Fluids 17, 094105 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Matsuoka, and K. Nishihara, Phys. Rev. E 74, 066303 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Liu, C. Yu, W. Ye, L. Wang, and X. He. Phys. Plasmas 21, 062119 (2014).

    Article  ADS  Google Scholar 

  18. L. Wang, J. Wu, H. Guo, W. Ye, J. Liu, W. Zhang, and X. He. Phys. Plasmas 22, 082702 (2015).

    Article  ADS  Google Scholar 

  19. L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Sci. China-Phys. Mech. Astron. 60, 055201 (2017).

    Article  ADS  Google Scholar 

  20. J. R. Fincke, N. E. Lanier, S. H. Batha, R. M. Hueckstaedt, G. R. Magelssen, S. D. Rothman, K. W. Parker, and C. J. Horsfield, Laser Part. Beams 23, 21 (2005).

    Article  ADS  Google Scholar 

  21. Q. Zhang, and M. J. Graham, Phys. Fluids 10, 974 (1998).

    Article  ADS  Google Scholar 

  22. B. Tian, D. Fu, and Y. Ma, Acta Mech. Sin. 22, 9 (2006).

    Article  ADS  Google Scholar 

  23. J. G. Zheng, T. S. Lee, and S. H. Winoto, Math. Comput. Simul. 79, 749 (2008).

    Article  Google Scholar 

  24. M. Lombardini, D. I. Pullin, and D. I. Meiron, J. Fluid Mech. 748, 113 (2014).

    Article  ADS  Google Scholar 

  25. M. Lombardini, D. I. Pullin, and D. I. Meiron, J. Fluid Mech. 748, 85 (2014).

    Article  ADS  Google Scholar 

  26. X. Luo, F. Zhang, J. Ding, T. Si, J. Yang, Z. Zhai, and C. Wen, J. Fluid Mech. 849, 231 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Abgrall, J. Comput. Phys. 125, 150 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  28. K. M. Shyue, J. Comput. Phys. 142, 208 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Shen, C. Y. Wen, and D. L. Zhang, J. Comput. Phys. 288, 101 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Shen, and C. Y. Wen, J. Comput. Phys. 305, 775 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. C. Chang, J. Comput. Phys. 119, 295 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Shen, C. Y. Wen, M. Parsani, and C. W. Shu, J. Comput. Phys. 330, 668 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  33. Z. Zhai, W. Li, T. Si, X. Luo, J. Yang, and X. Lu, Phys. Fluids 29, 016102 (2017).

    Article  ADS  Google Scholar 

  34. H. Shen, and M. Parsani, J. Fluid Mech. 813, R4 (2017).

    Article  ADS  Google Scholar 

  35. J. Ding, T. Si, J. Yang, X. Lu, Z. Zhai, and X. Luo, Phys. Rev. Lett. 119, 014501 (2017).

    Article  ADS  Google Scholar 

  36. W. Chester, London Edinburgh Dublin Philos. Mag. J. Sci. 45, 1293 (1954).

    Article  MathSciNet  Google Scholar 

  37. R. F. Chisnell, J. Fluid Mech. 2, 286 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  38. G. B. Whitham, J. Fluid Mech. 4, 337 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Lombardini, and D. I. Pullin, Phys. Fluids 21, 044104 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Z., Zhang, F., Zhou, Z. et al. Numerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability. Sci. China Phys. Mech. Astron. 62, 124712 (2019). https://doi.org/10.1007/s11433-019-9441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9441-4

En

Navigation