Log in

Implementing two optimal economical quantum cloning with superconducting quantum interference devices in a cavity

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y H, Song H S. Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin Sci Bull, 2009, 54(15): 2599–2605; Zhang Y J, **a Y J, Man Z X, et al. Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED. Sci China Ser G-Phys Mech Astron, 2009, 52(5): 700–707

    Article  Google Scholar 

  2. Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1882, 299: 802–803

    Article  ADS  Google Scholar 

  3. Bruß D, DiVincenzo D P, Ekert A, et al. Optimal universal and state-dependent quantum cloning. Phys Rev A, 1998, 57: 2368–2378

    Article  ADS  Google Scholar 

  4. Bruss D, Ekert A, Macchiavello C. Optimal universal quantum cloning and state estimation. Phys Rev Lett, 1998, 81: 2598–2601

    Article  ADS  Google Scholar 

  5. Werner R F. Optimal cloning of pure states. Phys Rev A, 1998, 58: 1827–1832

    Article  ADS  Google Scholar 

  6. Duan L M, Guo G C. Probabilistic cloning and identification of linearly independent quantum states. Phys Rev Lett, 1998, 80: 4999–5002

    Article  ADS  Google Scholar 

  7. Duan L M, Guo G C. A probabilistic cloning machine for replicating two non-orthogonal states. Phys Lett A, 1998, 243: 261–264

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bužek V, Hillery M. Quantum copying: Beyond the no-cloning theorem. Phys Rev A, 1996, 54: 1844–1852

    Article  MathSciNet  ADS  Google Scholar 

  9. Bužek V, Hillery M, Werner R F. Optimal manipulations with qubits: Universal-NOT gate. Phys Rev A, 1999, 60: R2626–R2629

    Article  ADS  Google Scholar 

  10. Han Y J, Zhang Y S, Guo G C. Bounds for state-dependent quantum cloning. Phys Rev A, 2002, 66: 052301-1–6

    Article  ADS  Google Scholar 

  11. Durt T, Du J F. Characterization of low-cost one-to-two qubit cloning. Phys Rev A, 2004, 69: 062316-1–10

    ADS  Google Scholar 

  12. Zhang W H, Wu T, Ye L, et al. Optimal real state cloning in d dimensions. Phys Rev A, 2007, 75: 044303-1–4; Zhang W H, Ye L. Optimal asymmetric phase-covariant and real state cloning in d dimensions. New J Phys, 2007, 9: 318–328

    ADS  Google Scholar 

  13. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  14. Zou X B, Dong Y L, Guo G C. Scheme for realizing ancilla-free 1 → M economic phase-covariant quantum cloning of qubits and qutrits. Phys Lett A, 2006, 360: 44–48

    Article  MATH  ADS  Google Scholar 

  15. Zheng S B, Guo G C. Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases. Phys Rev A, 2005, 72: 064303-1–4

    Article  ADS  Google Scholar 

  16. Zhang W H, Ye L. Scheme to implement general economical phase-covariant telecloning. Phys Lett A, 2006, 353: 130–137

    Article  ADS  Google Scholar 

  17. Zhao Z, Zhang A N, Zhou X Q, et al. Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation. Phys Rev Lett, 2005, 95: 030502-1–4

    ADS  Google Scholar 

  18. Chen H W, Zhou X Y, Suter D, et al. Experimental realization of 1 → 2 asymmetric phase-covariant quantum cloning. Phys Rev A, 2007, 75: 012317-1–5

    ADS  Google Scholar 

  19. Sabuncu M, Andersen U L, Leuchs G, et al. Experimental demonstration of continuous variable cloning with phase-conjugate inputs. Phys Rev Lett, 2007, 98: 170503-1–4

    Article  ADS  Google Scholar 

  20. Sabuncu M, Leuchs G, Anderson U L, et al. Experimental continuous-variable cloning of partial quantum information. Phys Rev A, 2008, 78: 052312-1–5

    Article  ADS  Google Scholar 

  21. Shao X Q, Wang H F, Chen L, et al. One-step implementation of the 1 → 3 orbital state quantum cloning machine via quantum Zeno dynamics. Phys Rev A, 2009, 80: 062323-1–7; Wang X W, Yang G J. Probabilistic ancilla-free phase-covariant telecloning of qudits with the optimal fidelity. Phys Rev A, 2009, 79: 064306-1–4; Hu J Z, Yu Z W, Wang X B. Quantum cloning machine of a state in a belt of Bloch sphere. Eur Phys J D, 2009, 51: 381–385

    Article  ADS  Google Scholar 

  22. Makhlin Y, Schoen G, Shnirman A. Josephson-junction qubits with controlled couplings. Nature, 1999, 398: 305–306

    Article  ADS  Google Scholar 

  23. Nakamura Y, Pashkin Y, Tsai J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398: 786–787

    Article  ADS  Google Scholar 

  24. Rouse R, Han S, Lukens J E. Observation of resonant tunneling between macroscopically distinct quantum levels. Phys Rev Lett, 1995, 75: 1614–1617

    Article  ADS  Google Scholar 

  25. van der Wal C H, ter Haar A C J, et al. Quantum superposition of macroscopic persistent-current states. Science, 2000, 290: 773–777

    Article  ADS  Google Scholar 

  26. Han S, Rouse R, Lukens J E. Generation of a population inversion between quantum states of a macroscopic variable. Phys Rev Lett, 1996, 76: 3404–3407

    Article  ADS  Google Scholar 

  27. Friedman J R, Patel V, Chen W, et al. Quantum superposition of distinct macroscopic states. Nature, 2000, 406: 43–45

    Article  ADS  Google Scholar 

  28. Zhu S L, Wang Z D, Zanardi P. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys Rev Lett, 2005, 94: 100502-1–4

    Article  MathSciNet  ADS  Google Scholar 

  29. Zhou Z, Chu S I, Han S. A three-level SQUID qubit Quantum computing with superconducting devices. Phys Rev B, 2002, 66: 054527-1–6

    ADS  Google Scholar 

  30. Kis Z, Paspalakis E. Arbitrary rotation and entanglement of flux SQUID qubits. Phys Rev B, 2004, 69: 024510-1–6

    Article  ADS  Google Scholar 

  31. Yang C P, Chu S I, Han S. Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys Rev A, 2003, 67: 042311-1–8

    ADS  Google Scholar 

  32. Yang C P, Han S. Arbitrary single-qubit operations without energy relaxation in a three-level SQUID qubit. Phys Lett A, 2004, 321: 273–279

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Amin M H S, Smirnov A Y, van den Brink A M, et al. Josephson-phase qubit without tunneling. Phys Rev B, 2003, 67: 100508 (R)-1–4

    Article  ADS  Google Scholar 

  34. Song K H, Zhou Z W, Guo G C. Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition. Phys Rev A, 2005, 71: 052310-1–4

    Article  ADS  Google Scholar 

  35. Yu L B, Zhang W H, Ye L. Implementing an ancilla-free 1 → M economical phase-covariant quantum cloning machine with superconducting quantum-interference devices in cavity QED. Phys Rev A, 2007, 76: 034303-1–4

    ADS  Google Scholar 

  36. Fan H, Matsumoto K, Wang X B, et al. Quantum cloning machines for equatorial qubits. Phys Rev A, 2001, 65: 012304-1–7

    Article  ADS  Google Scholar 

  37. Feng M. Quantum computing with trapped ions in an optical cavity via Raman transition. Phys Rev A, 2001, 66: 054303-1–4

    ADS  Google Scholar 

  38. Yang C P, Han S. n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys Rev A, 2005, 72: 032311-1–8

    ADS  Google Scholar 

  39. Yang C P, Han S. Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys Rev A, 2006, 73: 032317-1–11

    ADS  Google Scholar 

  40. Song K H, **ang S H, Liu Q, et al. Quantum computation and W-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation. Phys Rev A, 2007, 75: 032347-1–5; Zhang P, Wang Z D, Sun J D, et al. Holonomic quantum computation using rf superconducting quantum interference devices coupled through a microwave cavity. Phys Rev A, 2005, 71: 042301-1–5

    Article  ADS  Google Scholar 

  41. Yu Y, Han S, Chu X, et al. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science, 2002, 296: 889–892

    Article  ADS  Google Scholar 

  42. Chiorescu I, Nakamura Y, Harmans C J P M, et al. Coherent quantum dynamics of a superconducting flux qubit. Science, 2003, 299: 1869–1871

    Article  ADS  Google Scholar 

  43. Yu Y, Nakada D, Lee J C, et al. Energy relaxation time between macroscopic quantum levels in a superconducting persistent-current qubit. Phys Rev Lett, 2004, 92: 117904-1–4

    ADS  Google Scholar 

  44. Yang C P, Han S. Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction. Phys Rev A, 2006, 74: 044302-1–4

    ADS  Google Scholar 

  45. Liu Y X, Wei L F, Nori F, et al. Quantum tomography for solid-state qubits. Europhys Lett, 2004, 67: 874–880

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, L., Hu, G. & Li, A. Implementing two optimal economical quantum cloning with superconducting quantum interference devices in a cavity. Sci. China Phys. Mech. Astron. 54, 115–120 (2011). https://doi.org/10.1007/s11433-010-4116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4116-9

Keywords

Navigation