Log in

Multi-stream signals separation based on space-time-isomeric (SPATIO) array using metasurface antennas

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In spatial domain signal processing, it is necessary to equip more antennas at the receiver to improve spatial demultiplexing capability. However, increasing the number of antennas under restricted space will reduce antenna spacing and raise the channel correlation, making the number of signal streams spatially demultiplexed much smaller than that of antennas. This paper proposes a method to design a space-time-isomeric (SPATIO) array based on metasurface antennas under wireless multipath conditions. Each antenna in this array has a different pattern and varies independently with time, reducing the channel correlation by superposing multipath at distinct positions and moments. Based on the SPATIO array, we present an array parameter design scheme based on infinity norm minimization, which can maximize the received energy of each stream while separating multi-stream received signals. Simulation results illustrate the performance of the SPATIO array for multi-stream signal reception. Compared with conventional multiple-input multiple-output arrays, the proposed array can reduce the bit error rate by one order of magnitude under the same simulation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. Gupta A, Jha R K. A survey of 5G network: architecture and emerging technologies. IEEE Access, 2015, 3: 1206–1232

    Article  Google Scholar 

  2. Gesbert D, Hanly S, Huang H, et al. Multi-cell MIMO cooperative networks: a new look at interference. IEEE J Sel Areas Commun, 2010, 28: 1380–1408

    Article  Google Scholar 

  3. Hasan W B, Harris P, Doufexi A, et al. Impact of user number on massive MIMO with a practical number of antennas. In: Proceedings of the 87th Vehicular Technology Conference (VTC Spring), Porto, 2018. 1–5

  4. Harris P, Malkowsky S, Vieira J, et al. Performance characterization of a real-time massive MIMO system with LOS mobile channels. IEEE J Sel Areas Commun, 2017, 35: 1244–1253

    Article  Google Scholar 

  5. Harris P, Hasan W B, Malkowsky S, et al. Serving 22 users in real-time with a 128-antenna massive MIMO testbed. In: Proceedings of the IEEE International Workshop on Signal Processing Systems (SiPS), Dallas, 2016. 266–272

  6. Shiu D S, Foschini G J, Gans M J, et al. Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans Commun, 2000, 48: 502–513

    Article  Google Scholar 

  7. Lee W C Y. Effects on correlation between two mobile radio base-station antennas. IEEE Trans Veh Technol, 1973, 22: 130–140

    Article  Google Scholar 

  8. Chiao J-C, Fu Y, Chio I M, et al. MEMS reconfigurable vee antenna. In: Proceedings of the IEEE MTT-S International Microwave Symposium Digest, 1999. 1515–1518

  9. Grau A, Romeu J, Ming-Jer Lee J, et al. A dual-linearly-polarized MEMS-reconfigurable antenna for narrowband MIMO communication systems. IEEE Trans Antenna Propagat, 2010, 58: 4–17

    Article  ADS  Google Scholar 

  10. Nikolaou S, Kingsley N D, Ponchak G E, et al. UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines. IEEE Trans Antenna Propagat, 2009, 57: 2242–2251

    Article  ADS  Google Scholar 

  11. Zhang J, Zhang S, Ying Z, et al. Radiation-pattern reconfigurable phased array with p-i-n diodes controlled for 5G mobile terminals. IEEE Trans Microw Theor Techn, 2020, 68: 1103–1117

    Article  ADS  Google Scholar 

  12. Nikolaou S, Bairavasubramanian R, Lugo C, et al. Pattern and frequency reconfigurable annular slot antenna using PIN diodes. IEEE Trans Antenna Propagat, 2006, 54: 439–448

    Article  ADS  Google Scholar 

  13. Tawk Y, Costantine J, Christodoulou C G. A varactor-based reconfigurable filtenna. Antenna Wirel Propag Lett, 2012, 11: 716–719

    Article  ADS  Google Scholar 

  14. White C R, Rebeiz G M. Single- and dual-polarized tunable slot-ring antennas. IEEE Trans Antenna Propagat, 2009, 57: 19–26

    Article  ADS  Google Scholar 

  15. Christodoulou C G, Tawk Y, Lane S A, et al. Reconfigurable antennas for wireless and space applications. Proc IEEE, 2012, 100: 2250–2261

    Article  Google Scholar 

  16. Parchin N O, Basherlou H J, Al-Yasir Y I A, et al. Reconfigurable antennas: switching techniques-a survey. Electronics, 2020, 9: 336

    Article  Google Scholar 

  17. Parchin N O, Basherlou H J, Al-Yasir Y, et al. Recent developments of reconfigurable antennas for current and future wireless communication systems. Electronics, 2019, 8: 128

    Article  Google Scholar 

  18. ** G, Li M, Liu D, et al. A simple planar pattern-reconfigurable antenna based on arc dipoles. Antenna Wirel Propag Lett, 2018, 17: 1664–1668

    Article  ADS  Google Scholar 

  19. Almasi M A, Mehrpouyan H, Matolak D, et al. Reconfigurable antenna multiple access for 5G mmWave systems. In: Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Kansas, 2018. 1–6

  20. Kiesel G, Strates E, Phillips C. Beam forming with a reconfigurable antenna array. In: Proceedings of the IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, 2016. 1–3

  21. Hunt J, Driscoll T, Mrozack A, et al. Metamaterial apertures for computational imaging. Science, 2013, 339: 310–313

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Yoo I, Imani M F, Sleasman T, et al. Efficient complementary metamaterial element for waveguide-fed metasurface antennas. Opt Express, 2016, 24: 28686–28692

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Yoo I, Imani M F, Sleasman T, et al. Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Trans Commun, 2019, 67: 1070–1084

    Article  Google Scholar 

  24. Kong G S, Ma H F, Cai B G, et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci Rep, 2016, 6: 29600

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang M, Ma H F, Tang W X, et al. Leaky-wave radiations with arbitrarily customizable polarizations based on spoof surface plasmon polaritons. Phys Rev Appl, 2019, 12: 014036

    Article  ADS  CAS  Google Scholar 

  26. Wang M, Ma H F, Zhang H C, et al. Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line. IEEE Trans Antenna Propagat, 2018, 66: 4449–4457

    Article  ADS  Google Scholar 

  27. Shuang Y, Zhao H T, Wei M L, et al. One-bit quantization is good for programmable coding metasurfaces. Sci China Inf Sci, 2022, 65: 172301

    Article  MathSciNet  Google Scholar 

  28. Liu X B, Xue W, Chen X M, et al. On the uniqueness of virtual substrate for metasurface in a dielectric half-space. Sci China Inf Sci, 2022, 65: 112302

    Article  MathSciNet  Google Scholar 

  29. ** L, Lou Y, Xu X, et al. Separating multi-stream signals based on space-time isomerism. In: Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nan**g, 2020. 418–423

  30. Horn R A, Johnson C R. Matrix Analysis. 2nd ed. Cambridge: Cambridge University Press, 2012

    Book  Google Scholar 

  31. Liu C, Vaidyanathan P P. Super nested arrays: sparse arrays with less mutual coupling than nested arrays. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016. 2976–2980

  32. Shi W, Li Y, de Lamare R C. Novel sparse array design based on the maximum inter-element spacing criterion. IEEE Signal Process Lett, 2022, 29: 1754–1758

    Article  ADS  Google Scholar 

  33. Lou Y, ** L, Sun X, et al. Multi-path separation and parameter estimation by single DMA in fading channel. IET Commun, 2022, 16: 1475–1485

    Article  Google Scholar 

  34. Liu T, Hoang M, Yang Y, et al. A parallel optimization approach on the infinity norm minimization problem. In: Proceedings of the 27th European Signal Processing Conference (EUSIPCO), 2019. 1–5

  35. Narandzic M, Schneider C, Thoma R, et al. Comparison of SCM, SCME, and WINNER channel models. In: Proceedings of the 65th Vehicular Technology Conference, Dublin, 2007. 413–417

  36. Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 2014, 3: e218

    Article  Google Scholar 

  37. Liang J C, Cheng Q, Gao Y, et al. An angle-insensitive 3-bit reconfigurable intelligent surface. IEEE Trans Antenna Propagat, 2022, 70: 8798–8808

    Article  ADS  Google Scholar 

  38. Dai J Y, Tang W, Chen M Z, et al. Wireless communication based on information metasurfaces. IEEE Trans Microw Theor Techn, 2021, 69: 1493–1510

    Article  ADS  Google Scholar 

  39. Zhang L, Chen M Z, Tang W, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electron, 2021, 4: 218–227

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Program of Song Shan Laboratory (included in the Management of the Major Science and Technology Program of Henan Province) (Grant Nos. 221100211300-01, 221100211300-03) and National Natural Science Foundation of China (Grant Nos. U22A2001, 62201139, 62171364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang **.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., **, L., Wang, H. et al. Multi-stream signals separation based on space-time-isomeric (SPATIO) array using metasurface antennas. Sci. China Inf. Sci. 67, 122301 (2024). https://doi.org/10.1007/s11432-023-3788-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3788-y

Keywords

Navigation