Log in

Robust control of uncertain robotic systems: An adaptive friction compensation approach

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper solves the robust control problem of robotic manipulator systems with uncertain dynamics by friction compensation approach. A weighting factor is introduced to distinguish the role of friction in control process by comparing the directions of sliding vector and friction. Utilizing the weighting factor, model-based and model-free adaptive friction compensation controllers are designed to achieve asymptotical tracking of the desired joint-space trajectory according to the knowledge of friction. The dam** property of friction is fully used to improve the control performance by compensating the friction harmful for the stability, and on the other hand, utilizing the beneficial friction. Numerical simulations are given to demonstrate the control performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H. Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans Automat Contr, 2017, 62: 948–954

    Article  MathSciNet  Google Scholar 

  2. Wang L J, Meng B. Characteristic model-based consensus of networked heterogeneous robotic manipulators with dynamic uncertainties. Sci China Tech Sci, 2016, 59: 63–71

    Article  Google Scholar 

  3. Zhao Y, Duan Z, Wen G. Distributed finite-time tracking of multiple Euler-Larange systems without velocity measurements. Int J Robust Nonlinear Control, 2015, 25: 1688–1703

    Article  Google Scholar 

  4. Zhou J, Wu X J, Liu Z R. Distributed coordinated adaptive tracking in networked redundant robotic systems with a dynamic leader. Sci China Tech Sci, 2014, 57: 905–913

    Article  Google Scholar 

  5. Huang N, Duan Z S, Zhao Y. Distributed consensus for multiple Euler-Lagrange systems: An event-triggered approach. Sci China Tech Sci, 2016, 59: 33–44

    Article  Google Scholar 

  6. Chernousko F L, Shunderyuk M M. The influence of friction forces on the dynamics of a two-link mobile robot. J Appl Math Mech, 2010, 74: 13–23

    Article  MathSciNet  Google Scholar 

  7. Zhang S, Wang S, **g F, et al. Parameter estimation survey for multi-joint robot dynamic calibration case study. Sci China Inf Sci, 2019, 62: 202203

    Article  MathSciNet  Google Scholar 

  8. Putra D, Nijmeijer H, van de Wouw N. Analysis of undercompensation and overcompensation of friction in 1DOF mechanical systems. Automatica, 2007, 43: 1387–1394

    Article  MathSciNet  Google Scholar 

  9. Garofalo G, Ott C. Limit cycle control using energy function regulation with friction compensation. IEEE Robot Autom Lett, 2016, 1: 90–97

    Article  Google Scholar 

  10. Sanxiu W, Shengtao J. Adaptive Friction Compensation of Robot Manipulator. Berlin, Heidelberg: Springer Berlin-Heidelberg, 2011

    Book  Google Scholar 

  11. Grotjahn M, Daemi M, Heimann B. Friction and rigid body identification of robot dynamics. Int J Solids Struct, 2001, 38: 1889–1902

    Article  Google Scholar 

  12. Armstrong-Helouvry B, Dupont P, De Wit C C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, 30: 1083–1138

    Article  Google Scholar 

  13. Olsson H, Åström K J, Canudas de Wit C, et al. Friction models and friction compensation. Eur J Control, 1998, 4: 176–195

    Article  Google Scholar 

  14. Prüfer M, Wahl F M. Friction analysis and modelling for geared robots. IFAC Proc Volumes, 1994, 27: 551–556

    Article  Google Scholar 

  15. Zhao Z, Liu C, Chen B. The numerical method for three-dimensional impact with friction of multi-rigid-body system. Sci China Ser G, 2006, 49: 102–118

    Article  Google Scholar 

  16. Bona B, Indri M. Friction compensation in robotics: An overview. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville Spain, 2005. 4360–4367

  17. Kostic D, deJager B, Steinbuch M, et al. Modeling and Identification for high-performance robot control: An RRR-robotic arm case study. IEEE Trans Contr Syst Technol, 2004, 12: 904–919

    Article  Google Scholar 

  18. Putra D, Moreau L, Nijmeijer H. Observer-based compensation of discontinuous friction. In: Proceedings of 2004 43rd IEEE Conference on Decision and Control (CDC). Nassau, 2004. 4940–4945

  19. Aguilar L T, Orlov Y, Acho L. Nonlinear H-control of nonsmooth time-varying systems with application to friction mechanical manipulators. Automatica, 2003, 39: 1531–1542

    Article  MathSciNet  Google Scholar 

  20. Mallon N, van de Wouw N, Putra D, et al. Friction compensation in a controlled one-link robot using a reduced-order observer. IEEE Trans Contr Syst Technol, 2006, 14: 374–383

    Article  Google Scholar 

  21. Slotine J J E. Applied Nonlinear Control. Englewood Cliffs: Prentice Hall, 1991

    MATH  Google Scholar 

  22. Alonge F, D’Ippolito F, Raimondi F M. Adaptive and robust techniques for friction compensation in motion control of robotic manipulators. IFAC Proc Volumes, 1997, 30: 1647–1653

    Article  Google Scholar 

  23. Zhu Y L, Pagilla P R. Static and dynamic friction compensation in trajectory tracking control of robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation. Washington, 2002. 2644–2649

  24. Tomei P. Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans Automat Contr, 2000, 45: 2164–2169

    Article  MathSciNet  Google Scholar 

  25. Erfanian V, Kabganian M. Adaptive trajectory control and dynamic friction compensation for a flexible-link robot. J Mech, 2010, 26: 205–217

    Article  Google Scholar 

  26. Slotine J J E, Wei** Li J J E. On the Adaptive control of robot manipulators. Int J Robotics Res, 1987, 6: 49–59

    Article  Google Scholar 

  27. Spong M W, Thorp J S, Kleinwaks J M. The control of robot manipulators with bounded input: Part ii: Robustness and disturbance rejection. In: Proceedings of the 23rd IEEE Conference on Decision and Control. Las Vegas, 1984. 1047–1052

  28. Sage H G, De Mathelin M F, Ostertag E. Robust control of robot manipulators: A survey. Int J Control, 1999, 72: 1498–1522

    Article  MathSciNet  Google Scholar 

  29. Jeng-Shi C, Jyh-Ching J. A robust friction control scheme of robot manipulators. In: Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, 2003. 3266–3271

  30. Sun T, Cheng L, Hou Z, et al. A novel sliding-mode disturbance observer-based tracking control with applications to robot manipulators. Sci China Infor Sci, 2020, doi: https://doi.org/10.1007/s11432-020-3043-y

  31. Spong M W, Vidyasagar M. Robot Dynamics and Control. New York: John Wiley & Sons, 1989

    Google Scholar 

  32. Cheah C C, Liu C, Slotine J J E. Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int J Robotics Res, 2006, 25: 283–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingYun Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11932003, U1713223, 62003013 and 61673026), the National Key R&D Program of China (Grant No. 2018AAA0102703), and the China Postdoctoral Science Foundation (Grant Nos. BX20190025 and 2019M660405).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhuang, H., Duan, Z. et al. Robust control of uncertain robotic systems: An adaptive friction compensation approach. Sci. China Technol. Sci. 64, 1228–1237 (2021). https://doi.org/10.1007/s11431-020-1745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1745-6

Keywords

Navigation