Log in

Mechanical properties of nanocrystalline nanoporous gold complicated by variation of grain and ligament: A molecular dynamics simulation

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A series of large-scale molecular dynamics (MD) simulations has been performed to study the effects of grain size and ligament diameter on the mechanical properties of nanocrystalline nanoporous gold. Such simulations indicate that the principal deformation mechanism is a combination of grain boundary sliding, grain rotation and dislocation movement. The results of uniaxial tensile tests reveal the presence of a reverse Hall-Petch relation between strength and nominal grain size, rather than the conventional Hall-Petch relationship in the present range of nominal grain size (7.9–52.7 nm). An increase of flow stress may possibly attribute to the lower total proportion of grain boundary sliding and grain rotation in the deformation of samples with larger grain size. The Young’s modulus shows a linear relation with the reciprocal of nominal grain size, which depends largely on the volume fraction of grain boundaries and thus decreasing grain size leads to relatively lower Young’s modulus. MD simulations on samples with ligament diameter ranging from 4.07 to 8.10 nm are also carried out and results show that the increasing ligament diameter resulted in decreased flow stress and increased Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science, 2010, 327: 319–322

    Article  Google Scholar 

  2. Ding Y, Zhang Z. Nanoporous Metals for Advanced Energy Technologies. Berlin: Springer Cham, 2016. 83–131

    Book  Google Scholar 

  3. Zhang L, Chang H, Hirata A, et al. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano, 2013, 7: 4595–4600

    Article  Google Scholar 

  4. Biener J, Wittstock A, Zepeda-Ruiz L A, et al. Surface-chemistrydriven actuation in nanoporous gold. Nat Mater, 2009, 8: 47–51

    Article  Google Scholar 

  5. Sun S, Chen X, Badwe N, et al. Potential-dependent dynamic fracture of nanoporous gold. Nat Mater, 2015, 14: 894–898

    Article  Google Scholar 

  6. Vega A A, Newman R C. Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au:Pt ratio. J Electrochem Soc, 2013, 161: C1–C10

    Article  Google Scholar 

  7. Mameka N, Wang K, Markmann J, et al. Nanoporous gold-testing macro-scale samples to probe small-scale mechanical behavior. Mater Res Lett, 2015, 4: 27–36

    Article  Google Scholar 

  8. Gibson L J, Ashby M F. Cellular Solids: Structure and Properties. 2nd ed. Cambridge: Cambridge University Press. 1997

    Book  MATH  Google Scholar 

  9. **a R, Feng X Q, Wang G F. Effective elastic properties of nanoporous materials with hierarchical structure. Acta Mater, 2011, 59: 6801–6808

    Article  Google Scholar 

  10. Chen Q, Pugno N M. Mechanics of hierarchical 3-D nanofoams. Europhys Lett, 2012, 97: 26002

    Article  Google Scholar 

  11. Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical behavior of nanoporous Au. Nano Lett, 2006, 6: 2379–2382

    Article  Google Scholar 

  12. Fu E G, Caro M, Zepeda-Ruiz L A, et al. Surface effects on the radiation response of nanoporous Au foams. Appl Phys Lett, 2012, 101: 191607

    Article  Google Scholar 

  13. Zhang Z, Wang Y, Qi Z, et al. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C, 2009, 113: 12629–12636

    Article  Google Scholar 

  14. Yu J, Ding Y, Xu C, et al. Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater, 2008, 20: 4548–4550

    Article  Google Scholar 

  15. Dou R, Xu B, Derby B. High-strength nanoporous silver produced by inkjet printing. Scripta Mater, 2010, 63: 308–311

    Article  Google Scholar 

  16. Qi Z, Zhao C, Wang X, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys. J Phys Chem C, 2009, 113: 6694–6698

    Article  Google Scholar 

  17. Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391: 561–563

    Article  Google Scholar 

  18. Dao M, Lu L, Asaro R, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater, 2007, 55: 4041–4065

    Article  Google Scholar 

  19. Rottmann P F, Hemker K J. Experimental quantification of mechanically induced boundary migration in nanocrystalline copper films. Acta Mater, 2017, 140: 46–55

    Article  Google Scholar 

  20. Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials. Prog Mater Sci, 2006, 51: 427–556

    Article  Google Scholar 

  21. Chokshi A H, Rosen A, Karch J, et al. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metall, 1989, 23: 1679–1683

    Article  Google Scholar 

  22. Nieh T G, Wadsworth J. Hall-petch relation in nanocrystalline solids. Scripta Metall Mater, 1991, 25: 955–958

    Article  Google Scholar 

  23. Sun X Y, Xu G K, Li X, et al. Mechanical properties and scaling laws of nanoporous gold. J Appl Phys, 2013, 113: 023505

    Article  Google Scholar 

  24. Rida A, Rouhaud E, Makke A, et al. Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples. Philos Mag, 2017, 97: 2387–2405

    Article  Google Scholar 

  25. Zhang T, Zhou K, Chen Z Q. Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics. Mater Sci Eng-A, 2015, 648: 23–30

    Article  Google Scholar 

  26. Zhou K, Liu B, Yao Y, et al. Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics. Mater Sci Eng-A, 2014, 615: 92–97

    Article  Google Scholar 

  27. **an Y, Li J, Wu R, et al. Softening of nanocrystalline nanoporous platinum: A molecular dynamics simulation. Comput Mater Sci, 2018, 143: 163–169

    Article  Google Scholar 

  28. Newman R C, Corcoran S G, Erlebacher J, et al. Alloy crrosion. MRS Bull, 1999, 24: 24–28

    Article  Google Scholar 

  29. Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys, 1958, 28: 258–267

    Google Scholar 

  30. Mäder U, Mader U. Chord length distributions for circular cylinders. Radiat Res, 1980, 82: 454–466

    Article  Google Scholar 

  31. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  32. Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B, 1984, 29: 6443–6453

    Article  Google Scholar 

  33. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Model Simul Mater Sci Eng, 2010, 18: 015012

    Article  Google Scholar 

  34. Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun, 2007, 177: 518–523

    Article  Google Scholar 

  35. Yildiz Y O, Kirca M. Atomistic simulation of Voronoi-based coated nanoporous metals. Model Simul Mater Sci Eng, 2017, 25: 025008

    Article  Google Scholar 

  36. Subramaniyan A K, Sun C T. Continuum interpretation of Virial stress in molecular simulations. Int J Solids Struct, 2008, 45: 4340–4346

    Article  MATH  Google Scholar 

  37. Zhu C, Liu X, Yu X, et al. A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers. Carbon, 2012, 50: 235–243

    Article  Google Scholar 

  38. Morrow B H, Striolo A. Supported bimetallic Pt-Au nanoparticles: Structural features predicted by molecular dynamics simulations. Phys Rev B, 2010, 81: 155437

    Article  Google Scholar 

  39. Shim J H, Lee B J, Cho Y W. Thermal stability of unsupported gold nanoparticle: A molecular dynamics study. Surf Sci, 2002, 512: 262–268

    Article  Google Scholar 

  40. Van Swygenhoven H, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B, 2000, 62: 831–838

    Article  Google Scholar 

  41. Farkas D, Frøseth A, Van Swygenhoven H. Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scripta Mater, 2006, 55: 695–698

    Article  Google Scholar 

  42. Gu X W, Loynachan C N, Wu Z, et al. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett, 2012, 12: 6385–6392

    Article  Google Scholar 

  43. Yamakov V, Wolf D, Phillpot S R, et al. Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos Mag Lett, 2003, 83: 385–393

    Article  Google Scholar 

  44. Nan C W, Li X, Cai K, et al. Grain size-dependent elastic moduli of nanocrystals. J Mater Sci Lett, 1997, 17: 1917–1919

    Article  Google Scholar 

  45. Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater, 1997, 45: 4019–4025

    Article  Google Scholar 

  46. Gao G J J, Wang Y J, Ogata S. Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains. Comput Mater Sci, 2013, 79: 56–62

    Article  Google Scholar 

  47. Li X, Gao H. Smaller and stronger. Nat Mater, 2016, 15: 373–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Re **a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., **an, Y., Zhou, H. et al. Mechanical properties of nanocrystalline nanoporous gold complicated by variation of grain and ligament: A molecular dynamics simulation. Sci. China Technol. Sci. 61, 1353–1363 (2018). https://doi.org/10.1007/s11431-018-9270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9270-9

Keywords

Navigation