Log in

Physically modulated phytoplankton production and export at submesoscales in the oligotrophic South China Sea Basin

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Oceanic submesoscales can significantly influence phytoplankton production and export owing to their similar timescales of days. Based on two-year Biogeochemical Argo (BGC-Argo) observations, this study investigated the development of submesoscale instabilities, particularly symmetric and mixed-layer baroclinic instabilities, and their impacts on biological production and export in the oligotrophic South China Sea basin. In the northern basin, near-surface winter blooms consistently cooccurred with seasonally deepened mixed layers. However, significantly stronger and weaker winter blooms were observed over two consecutive winters within the BGC-Argo observation period. During the first winter, symmetric-instability-induced upward nutrient entrainment played a crucial role in initiating the strong winter bloom in early December, when the mixed layer was approximately 20–30 m shallower than the nutricline. This bloom occurred approximately 20–30 days earlier than that anticipated owing to the contact between the seasonally deepened mixed layer and mesoscale-cyclone-induced uplifted nutricline. The symmetric instability also facilitated the export of fixed phytoplankton carbon from the surface to deeper layers. Conversely, during the second winter, remarkably intense mixed-layer baroclinic instability associated with an intense mesoscale anticyclone led to more significant shoaling of the mixed layer compared to the nutricline, thus increasing the vertical distance between the two layers. Under this condition, upward nutrient injection, phytoplankton bloom, and carbon export were suppressed. In contrast, the BGC-Argo float in the central basin revealed significantly inhibited seasonality of phytoplankton biomass and submesoscale instabilities compared to those in the northern basin, primarily owing to the significantly shallower winter mixed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  • Bachman S D, Fox-Kemper B, Taylor J R, Thomas L N. 2017. Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Model, 109: 72–95

    Article  Google Scholar 

  • Barkan R, McWilliams J C, Molemaker M J, Choi J, Srinivasan K, Shchepetkin A F, Bracco A. 2017. Submesoscale dynamics in the Northern Gulf of Mexico. Part II: Temperature-salinity relations and cross-shelf transport processes. J Phys Oceanogr, 47: 2347–2360

    Article  Google Scholar 

  • Bidigare R R, Kennicutt Ii M C, Brooks J M. 1985. Rapid determination of chlorophylls and their degradation products by high-performance liquid chromatography1. Limnol Oceanogr, 30: 432–435

    Article  CAS  Google Scholar 

  • Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. J Phys Oceanogr, 37: 2228–2250

    Article  Google Scholar 

  • Brannigan L. 2016. Intense submesoscale upwelling in anticyclonic eddies. Geophys Res Lett, 43: 3360–3369

    Article  Google Scholar 

  • Brannigan L, Marshall D P, Naveira Garabato A C, Nurser A J G, Kaiser J. 2017. Submesoscale instabilities in mesoscale eddies. J Phys Oceanogr, 47: 3061–3085

    Article  Google Scholar 

  • Callies J, Ferrari R, Klymak J M, Gula J. 2015. Seasonality in sub-mesoscale turbulence. Nat Commun, 6: 8

    Article  Google Scholar 

  • Callies J, Flierl G, Ferrari R, Fox-Kemper B. 2016. The role of mixed-layer instabilities in submesoscale turbulence. J Fluid Mech, 788: 5–41

    Article  CAS  Google Scholar 

  • Chen Y L, Chen H Y. 2006. Seasonal dynamics of primary and new production in the northern South China Sea: The significance of river discharge and nutrient advection. Deep Sea Res Part I-Oceanogr Res Papers, 53: 971–986

    Article  Google Scholar 

  • Chen Y L, Chen H Y, Karl D M, Takahashi M. 2004. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Cont Shelf Res, 24: 527–541

    Article  Google Scholar 

  • Erickson Z K, Thompson A F. 2018. The seasonality of physically driven export at submesoscales in the Northeast Atlantic Ocean. Glob Biogeochem Cycle, 32: 1144–1162

    Article  CAS  Google Scholar 

  • Fang G, Wang G, Fang Y, Fang W. 2012. A review on the South China Sea western boundary current. Acta Oceanol Sin, 31: 1–10

    Article  Google Scholar 

  • Fang M, Ju W, Liu X, Yu Z, Qiu F. 2015. Surface chlorophyll-a concentration spatio-temporal variations in the Northern South China sea detected using MODIS data. Terr Atmos Ocean Sci, 26: 319–329

    Article  Google Scholar 

  • Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281: 237–240

    Article  CAS  Google Scholar 

  • Fox-Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J Phys Oceanogr, 38: 1145–1165

    Article  Google Scholar 

  • Geng B, **u P, Shu C, Zhang W, Chai F, Li S, Wang D. 2019. Evaluating the roles of wind-and buoyancy flux-induced mixing on phytoplankton dynamics in the northern and central South China Sea. J Geophys Res-Oceans, 124: 680–702

    Article  Google Scholar 

  • Haine T W N, Marshall J. 1998. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J Phys Oceanogr, 28: 634–658

    Article  Google Scholar 

  • He Q, Zhan H, Cai S, He Y, Huang G, Zhan W. 2018. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J Geophys Res-Oceans, 123: 4906–4929

    Article  Google Scholar 

  • Hoskins B J. 1974. The role of potential vorticity in symmetric stability and instability. Quart J R Meteoro Soc, 100: 480–482

    Article  Google Scholar 

  • Hu J, Wang X H. 2016. Progress on upwelling studies in the China seas. Rev Geophys, 54: 653–673

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc, 83: 1631–1644

    Article  Google Scholar 

  • Lévy M, Franks P J S, Smith K S. 2018. The role of submesoscale currents in structuring marine ecosystems. Nat Commun, 9: 16

    Article  Google Scholar 

  • Lin H, Liu Z, Hu J, Menemenlis D, Huang Y. 2020. Characterizing meso-to submesoscale features in the South China Sea. Prog Oceanogr, 188: 102420

    Article  Google Scholar 

  • Lin K, Han T, Zhang Y, Shen C, Lee S, Wang J, Mohtar A T, Huang K, Chiang H, Chen Y, Wang X. 2024. Influences of East Asian winter monsoon and El Niño-Southern Oscillation variability on the Kuroshio intrusion to the South China Sea over the past 60 years. Geophys Res Lett, 51: e2023GL104155

    Article  Google Scholar 

  • Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu Rev Mar Sci, 8: 161–184

    Article  Google Scholar 

  • Mahadevan A, D’Asaro E, Lee C, Perry M J. 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337: 54–58

    Article  CAS  Google Scholar 

  • McWilliams J C. 2016. Submesoscale currents in the ocean. Proc R Soc A, 472: 20160117

    Article  Google Scholar 

  • Miao M F, Zhang Z W, Qiu B, Liu Z Y, Zhang X C, Zhou C, Guan S D, Huang X D, Zhao W, Tian J W. 2021. On contributions of multiscale dynamic processes to the steric height in the Northeastern South China Sea as revealed by moored observations. Geophys Res Lett, 48: e2021GL093829

    Article  Google Scholar 

  • Mignot A, Ferrari R, Claustre H. 2018. Floats with bio-optical sensors reveal what processes trigger the north Atlantic bloom. Nat Commun, 9: 1834

    Article  CAS  Google Scholar 

  • Ni Q, Zhai X, Wilson C, Chen C, Chen D. 2021. Submesoscale eddies in the South China Sea. Geophys Res Lett, 48: e2020GL091555

    Article  Google Scholar 

  • Omand M M, D’Asaro E A, Lee C M, Perry M J, Briggs N, Cetinić I, Mahadevan A. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348: 222–225

    Article  CAS  Google Scholar 

  • Park J, Farmer D. 2013. Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter. J Geophys Res-Oceans, 118: 7081–7094

    Article  Google Scholar 

  • Qiu C, Yang Z, Wang D, Feng M, Su J. 2022. The enhancement of sub-mesoscale ageostrophic motion on the mesoscale eddies in the South China Sea. J Geophys Res-Oceans, 127: e2022JC018736

    Article  Google Scholar 

  • Rudnick D L, Ferrari R. 1999. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283: 526–529

    Article  CAS  Google Scholar 

  • Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305: 367–371

    Article  CAS  Google Scholar 

  • Su J. 2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res, 24: 1745–1760

    Article  Google Scholar 

  • Tang H, Shu Y, Wang D, **e Q, Zhang Z, Li J, Shang X, Zhang O Y W, Liu D. 2023. Submesoscale processes observed by high-frequency float in the western South China sea. Deep Sea Res Part I-Oceanographic Res Papers, 192: 103896

    Article  Google Scholar 

  • Tang S, Liu F, Chen C. 2014. Seasonal and intraseasonal variability of surface chlorophyll-a concentration in the South China Sea. Aquat EcoSyst Health Manage, 17: 242–251

    Article  CAS  Google Scholar 

  • Taylor J R, Ferrari R. 2009. On the equilibration of a symmetrically unstable front via a secondary shear instability. J Fluid Mech, 622: 103–113

    Article  Google Scholar 

  • Taylor J R, Ferrari R. 2010. Buoyancy and wind-driven convection at mixed layer density fronts. J Phys Oceanogr, 40: 1222–1242

    Article  Google Scholar 

  • Taylor J R, Thompson A F. 2023. Submesoscale dynamics in the upper ocean. Annu Rev Fluid Mech, 55: 103–127

    Article  Google Scholar 

  • Thomas L N, Taylor J R, Ferrari R, Joyce T M. 2013. Symmetric instability in the Gulf stream. Deep Sea Res Part II-Topical Stud Oceanogr, 91: 96–110

    Article  Google Scholar 

  • Thompson A F, Lazar A, Buckingham C, Naveira Garabato A C, Damerell G M, Heywood K J. 2016. Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J Phys Oceanogr, 46: 1285–1307

    Article  Google Scholar 

  • **ng X, Qiu G, Boss E, Wang H. 2019. Temporal and vertical variations of particulate and dissolved optical properties in the South China Sea. J Geophys Res-Oceans, 124: 3779–3795

    Article  CAS  Google Scholar 

  • **ng X, Boss E, Chen S, Chai F. 2021. Seasonal and daily-scale photo-acclimation modulating the phytoplankton chlorophyll-carbon coupling relationship in the mid-latitude Northwest Pacific. J Geophys Res-Oceans, 126: e2021JC017717

    Article  CAS  Google Scholar 

  • Xue H, Chai F, Pettigrew N, Xu D, Shi M, Xu J. 2004. Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res, 109: 2002JC001724

    Article  Google Scholar 

  • Zhang W, Wang H, Chai F, Qiu G. 2016. Physical drivers of chlorophyll variability in the open South China Sea. J Geophys Res-Oceans, 121: 7123–7140

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao Z, Liao E, Jiang Y. 2022. ENSO and PDO-related inter-annual and interdecadal variations in the wintertime sea surface temperature in a typical subtropical strait. Clim Dyn, 59: 3359–3372

    Article  Google Scholar 

  • Zhang Z, Zhao W, Qiu B, Tian J. 2017. Anticyclonic eddy sheddings from kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J Phys Oceanogr, 47: 1243–1259

    Article  Google Scholar 

  • Zhao Z, Oey L, Huang B, Lu W, Jiang Y. 2022. Off-coast phytoplankton bloom in the Taiwan Strait during the northeasterly monsoon wind relaxation period. J Geophys Res-Oceans, 127: e2022JC018752

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions that helped to improve the manuscript. This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1004404), and the National Natural Science Foundation of China (Grant Nos. U22A20579, 42306006 & 41876004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Cai or Yuwu Jiang.

Ethics declarations

Conflict of interest The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xu, M., Huang, B. et al. Physically modulated phytoplankton production and export at submesoscales in the oligotrophic South China Sea Basin. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-023-1362-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-023-1362-1

Keywords

Navigation