Log in

Anthropogenic mineral generation and its potential resource supply: The case of niobium

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The strategy of carbon neutrality is resha** the global landscape of resource flow and recycling. As the final sink of geological minerals, the proliferated anthropogenic minerals, also called secondary resources, play an increasingly important role in resource supply enrichment. Niobium is a critical metal that lacks full concern for its sustainability. The fundamental principle of niobium circularity is to recycle and maintain the material as close to the manufacturing process as possible. Here we estimate the niobium-containing applications lost at their end-of-life, underscoring the imperative to minimize such disposal. Additionally, we elucidate the extraction processes for scrap and alloy quantities throughout the industry’s lifecycle. Drawing from anticipated waste generated by the majority of niobium applications, a forecast indicates a potential loss of approximately 168 kt by 2090 in the absence of recycling. Contrastingly, with a recycling efficiency of 90% for niobium, the projected loss diminishes to approximately 16 kt. We delve into the significance of niobium’s circular economy and explore various aspects that demand further investigation for a seamless transition from linear to circular practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves A R, Coutinho A d R. 2015. The evolution of the niobium production in Brazil. Mat Res, 18: 106–112

    Article  Google Scholar 

  • Alves A R, Coutinho A d R. 2019. Life cycle assessment of niobium: A mining and production case study in Brazil. Miner Eng, 132: 275–283

    Article  CAS  Google Scholar 

  • Bakry M, Li J, Zeng X. 2023. Evaluation of global niobium flow modeling and its market forecasting. Front Energy, 17: 286–293

    Article  Google Scholar 

  • Broadbent C. 2016. Steel’s recyclability: Demonstrating the benefits of recycling steel to achieve a circular economy. Int J Life Cycle Assess, 21: 1658–1665

    Article  Google Scholar 

  • Charpentier Poncelet A, Helbig C, Loubet P, Beylot A, Muller S, Villeneuve J, Laratte B, Thorenz A, Tuma A, Sonnemann G. 2022. Losses and lifetimes of metals in the economy. Nat Sustain, 5: 717–726

    Article  Google Scholar 

  • Ciacci L, Reck B K, Nassar N T, Graedel T E. 2015. Lost by design. Environ Sci Technol, 49: 9443–9451

    Article  CAS  Google Scholar 

  • Ciacci L, Harper E M, Nassar N T, Reck B K, Graedel T E. 2016. Metal dissipation and inefficient recycling intensify climate forcing. Environ Sci Technol, 50: 11394–11402

    Article  CAS  Google Scholar 

  • Cullen J M, Allwood J M, Bambach M D. 2012. Map** the global flow of steel: From steelmaking to end-use goods. Environ Sci Technol, 46: 13048–13055

    Article  CAS  Google Scholar 

  • European C, Directorate-General for Internal Market I E, Smes, Bobba S, Carrara S, Huisman J, Mathieux F, Pavel C. 2020. Critical raw materials for strategic technologies and sectors in the EU—A foresight study (doi/https://doi.org/10.2873/58081): Publications Office

  • Freiin von Rennenberg T S. 2021. Towards a circular economy of critical raw materials: The case of niobium. Dissertation for Master’s Degree. Twente: University of Twente

    Google Scholar 

  • Graedel T E, Allwood J, Birat J P, Buchert M, Hagelüken C, Reck B K, Sibley S F, Sonnemann G. 2011. What do we know about metal recycling rates? J Industrial Ecol, 15: 355–366

    Article  CAS  Google Scholar 

  • Graedel T E, Reck B K, Miatto A. 2022. Alloy information helps prioritize material criticality lists. Nat Commun, 13: 150

    Article  CAS  Google Scholar 

  • Hagelüken C, Goldmann D. 2022. Recycling and circular economy—Towards a closed loop for metals in emerging clean technologies. Miner Econ, 35: 539–562

    Article  Google Scholar 

  • Heisterkamp F, Carneiro T. 2011. Niobium: Future possibilities—Technology and the market place. Niobium, Science and Technology

  • IRP. 2024. Global Resources Outlook 2024: A report by the International Resource Panel. Nairobi, Kenya: United Nations Environment Programme

    Google Scholar 

  • Klinkenberg C, Trute S, Bleck W. 2006. Niobium in engineering steels for automotive applications. Steel Res Int, 77: 698–703

    Article  CAS  Google Scholar 

  • Liang Z, Geng Y, Zhong C, **ao S, Wei W. 2024. Tracking the evolution of niobium cycle in China from 2000 to 2021: A dynamic material flow analysis. J Clean Prod, 434: 140455

    Article  CAS  Google Scholar 

  • McCaffrey D M, Nassar N T, Jowitt S M, Padilla A J, Bird L R. 2023. Embedded critical material flow: The case of niobium, the United States, and China. Resour Conserv Recycl, 188: 106698

    Article  CAS  Google Scholar 

  • Milan Grohol, Constanze Veeh. DG GROW, European Commission. 2023. European Commission, Study on the Critical Raw Materials for the EU 2023-Final Report

  • Mujkic Z, Krekhovetckii N, Kraslawski A. 2019. Material pinch location and critical materials recycling. Int J Manage Sustainability, 8: 10–19

    Article  Google Scholar 

  • Pan S, Zeng F, Su N, **an Z. 2020. The effect of niobium addition on the microstructure and properties of cast iron used in cylinder head. J Mater Res Tech, 9: 1509–1518

    Article  CAS  Google Scholar 

  • Rahimpour Golroudbary S, Krekhovetckii N, El Wali M, Kraslawski A. 2019. Environmental sustainability of niobium recycling: The case of the automotive industry. Recycling, 4: 5

    Article  Google Scholar 

  • Sovacool B K, Ali S H, Bazilian M, Radley B, Nemery B, Okatz J, Mulvaney D. 2020. Sustainable minerals and metals for a low-carbon future. Science, 367: 30–33

    Article  CAS  Google Scholar 

  • Sverdrup H U, Olafsdottir A H. 2023. Modelling the dynamics of the industrial vanadium cycle using the WORLD7 Integrated Assessment Model. Resources Environ Sustainability, 13: 100121

    Article  Google Scholar 

  • Tkaczyk A H, Bartl A, Amato A, Lapkovskis V, Petranikova M. 2018. Sustainability evaluation of essential critical raw materials: Cobalt, niobium, tungsten and rare earth elements. J Phys D-Appl Phys, 51: 203001

    Article  Google Scholar 

  • Tutton C G, Young S B, Habib K. 2022. Pre-processing of e-waste in Canada: Case of a facility responding to changing material composition. Resources Environ Sustainability, 9: 100069

    Article  Google Scholar 

  • Wang P, Wang H, Chen W Q, Pauliuk S. 2022. Carbon neutrality needs a circular metal-energy nexus. Fundamental Res, 2: 392–395

    Article  Google Scholar 

  • Zeng X. 2023. Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality. Front Environ Sci Eng, 17: 23

    Article  Google Scholar 

  • Zeng X, Ogunseitan O A, Nakamura S, Suh S, Kral U, Li J, Geng Y. 2022a. Resha** global policies for circular economy. Circular Economy, 1: 100003

    Article  Google Scholar 

  • Zeng X, **ao T, Xu G, Albalghiti E, Shan G, Li J. 2022b. Comparing the costs and benefits ofvirgin and urban mining. J Manage Sci Eng, 7: 98–106

    Google Scholar 

  • Zhu Y, Syndergaard K, Cooper D R. 2019. Map** the annual flow of steel in the United States. Environ Sci Technol, 53: 11260–11268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 92062111 & 72394402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **hui Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Gómez, M., Bakry, M. et al. Anthropogenic mineral generation and its potential resource supply: The case of niobium. Sci. China Earth Sci. (2024). https://doi.org/10.1007/s11430-023-1349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11430-023-1349-2

Keywords

Navigation