Log in

Cosmogenic 10Be dating of the oldest moraine in the Hengduan Mountains

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Hengduan Mountains is in the transitional zone between the Qinghai-Tibet Plateau (QTP) and the Yunnan-Guizhou Plateau in China, and a key area for elucidating the Quaternary environmental changes in Asia. The paleo-Daocheng ice cap was located on the Shaluli Hilly Plateau in the northeastern Hengduan Mountains, the oldest moraines in the Hengduan Mountains region were found in the ice cap area. Such glacial landforms provide key evidence to study the timing when this area entered the cryosphere with the uplift of the QTP. However, it is difficult to collect suitable glacial boulders from these moraines for traditional terrestrial in-situ cosmogenic nuclide (TCN) exposure dating because of long-term severe moraine degradation. Here, we collected clast samples from the moraine surface and depth profile to constrain the age of the oldest moraine in Kuzhaori (moraine E) using TCN 10Be dating technique. The minimum 10Be ages of five clast samples from the moraine surface range from 187.4±1.5 to 576.8±4.3 ka, implying that the moraine has been seriously degraded since deposition. Based on the TCN 10Be concentrations of the samples from a depth profile and simulations, the exposure-erosion-inheritance history of the profile was obtained. By fitting to the profile 10Be concentrations using the chi-square test, the simulations yielded a reliable age of 626.0±52.5 ka for the moraine. Therefore, the oldest moraine (moraine E) in Kuzhaori was most likely formed at about 0.63 Ma ago, corresponding to the marine isotope stage (MIS) 16. This glaciation represents the maximum Quaternary glaciation after the QTP was elevated into the cryosphere by the Kunlun-Yellow River Tectonic Movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowski U, Bergau A, Seebach D, Zech R, Glaser B, Sosin P, Kubik P W, Zech W. 2006. Pleistocene glaciations of Central Asia: Results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat Sci Rev, 25: 1080–1096

    Google Scholar 

  • Balco G, Stone J O, Lifton N A, Dunai T J. 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol, 3: 174–195

    Google Scholar 

  • Balco G. 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat Sci Rev, 30: 3–27

    Google Scholar 

  • Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J. 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol, 31: 188–198

    Google Scholar 

  • Briner J P. 2009. Moraine pebbles and boulders yield indistinguishable 10Be ages: A case study from Colorado, USA. Quat Geochronol, 4: 299–305

    Google Scholar 

  • Brown E T, Edmond J M, Raisbeck G M, Yiou F, Kurz M D, Brook E J. 1991. Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochim Cosmochim Acta, 55: 2269–2283

    Google Scholar 

  • Chen F H, Ding L, Piao S L, Zhou T J, Xu B Q, Yao T D, Li X. 2021. The Tibetan Plateau as the engine for Asian environmental change: The Tibetan Plateau Earth system research into a new era. Sci Bull, 66: 1263–1266

    Google Scholar 

  • Chen Y X, Li Y K, Wang Y Y, Zhang M, Cui Z J, Yi C L, Liu G N. 2015. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from 10Be surface exposure and optically stimulated luminescence datings. Quat Sci Rev, 115: 17–27

    Google Scholar 

  • Chen Y X, Li Y K, Zhang M, Cui Z J, Liu G N. 2018. Much late onset of Quaternary glaciations on the Tibetan Plateau: Determining the age of the Shishapangma Glaciation using cosmogenic 26Al and 10Be dating. Sci Bull, 63: 306–313

    Google Scholar 

  • Chevalier M L, Wang S G, Replumaz A, Li H B. 2022. Marine Oxygen Isotope Stage (MIS)-6 glacial advances on the Tibetan Plateau more extensive than during MIS-2 due to more abundant precipitation. Acta Geol Sin-Engl Ed, 96: 1484–1494

    Google Scholar 

  • Chmeleff J, von Blanckenburg F, Kossert K, Jakob D. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms, 268: 192–199

    Google Scholar 

  • Cui L F, Yang Y, Xu S, Zhao Z Q, Mao H R, Zhang X L. 2021. Denudation rates of granitic regolith along climatic gradient in Eastern China. Geomorphology, 390: 107872

    Google Scholar 

  • Cui Z J, Wu Y Q, Liu G N, Ge D K, Pang Q Q, Xu Q H. 1998. On Kunlun-Yellow River tectonic movement. Sci China Ser D-Earth Sci, 41: 592–600

    Google Scholar 

  • Dortch J M, Owen L A, Caffee M W. 2010. Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quat Res, 74: 132–144

    Google Scholar 

  • Dunai T J. 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: A critical reevaluation. Earth Planet Sci Lett, 176: 157–169

    Google Scholar 

  • Fang X M, Chen F B, Shi Y F, Li J J. 1996. Garz loess and the evolution of the cryosphere on the Tibetan Plateau (in Chinese). Chin Sci Bull, 41: 1865–1867

    Google Scholar 

  • Fu P, Stroeven A P, Harbor J M, Hättestrand C, Heyman J, Caffee M W, Zhou L. 2013. Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau. Quat Sci Rev, 64: 121–135

    Google Scholar 

  • Gosse J C, Phillips F M. 2001. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev, 20: 1475–1560

    Google Scholar 

  • Hallet B, Putkonen J. 1994. Surface dating of dynamic landforms: Young boulders on aging moraines. Science, 265: 937–940

    Google Scholar 

  • Heyman J, Stroeven A P, Harbor J M, Caffee M W. 2011. Too young or too old: Evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet Sci Lett, 302: 71–80

    Google Scholar 

  • Hidy A J, Gosse J C, Pederson J L, Mattern J P, Finkel R C. 2010. A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona. Geochem Geophys Geosyst, 11: Q0AA10

    Google Scholar 

  • Kapannusch R, Scherler D, King G, Wittmann H. 2020. Glacial influence on late Pleistocene 10Be-derived paleo-erosion rates in the north-western Himalaya, India. Earth Planet Sci Lett, 547: 116441

    Google Scholar 

  • Kohl C P, Nishiizumi K. 1992. Chemical isolation of quartz for measurement of in situ produced cosmogenic nuclides. Geochim Cosmochim Acta, 56: 3583–3587

    Google Scholar 

  • Korschinek G, Bergmaier A, Faestermann T, Gerstmann U C, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, von Gostomski C L, Kossert K, Maiti M, Poutivtsev M, Remmert A. 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms, 268: 187–191

    Google Scholar 

  • Lal D. 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett, 104: 424–439

    Google Scholar 

  • Li B Y, Wang F B. 1986. Basic features of geomorphology in northwest Yunnan and southwest Sichuan (II). In: Hengduan Mountain Expedition Anthology. Bei**g: Science and Technology Press

    Google Scholar 

  • Li J J, Yao T D, Feng Z D. 1986. Development pattern of Daocheng ancient ice cap. In: Hengduan Mountain Expedition Anthology (II). Bei**g: Science and Technology Press

    Google Scholar 

  • Li Y K, Liu G N, Chen Y X, Li Y N, Habor J, Stroeven A P, Caffee M, Zhang M, Li C C, Cui Z J. 2014. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating. Quat Sci Rev, 98: 7–23

    Google Scholar 

  • Lifton N, Sato T, Dunai T J. 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett, 386: 149–160

    Google Scholar 

  • Lira M P, García J L, Bentley M J, Jamieson S S R, Darvill C M, Hein A S, Fernández H, Rodés Á, Fabel D, Smedley R K, Binnie S A. 2022. The Last Glacial Maximum and deglacial history of the Seno Skyring Ice Lobe (52°S), Southern Patagonia. Front Earth Sci, 10: 1–27

    Google Scholar 

  • Liu D Y. 2009. Paleo climate evolution since the late early Pleistocene: An evidence from a loess record, Garze, west Sichuan Plateau. Dissertation for Doctoral Degree. Qingdao: Ocean University of China

    Google Scholar 

  • Liu Y M, Ren S M, Liu Y Q, Genser J, Neubauer F. 2020. Early Pleistocene uplift of the northeastern Tibetan Plateau: Evidence from the Dunhuang Basin, NW China. J Asian Earth Sci, 188: 104130

    Google Scholar 

  • Margreth A, Gosse J C, Dyke A S. 2017. Wisconsinan and early Holocene glacial dynamics of Cumberland Peninsula, Baffin Island, Arctic Canada. Quat Sci Rev, 168: 79–100

    Google Scholar 

  • Marrero S M, Phillips F M, Borchers B, Lifton N, Aumer R, Balco G. 2016. Cosmogenic nuclide systematics and the cronuscalc program. Quat Geochronol, 31: 160–187

    Google Scholar 

  • Matthews J A, Shakesby R A, Fabel D. 2017. Very low inheritance in cosmogenic surface exposure ages of glacial deposits: A field experiment from two Norwegian glacier forelands. Holocene, 27: 1406–1414

    Google Scholar 

  • Mei Y. 2010. Study on geo-tourism resource and protective development mode in the Haizishan Natural Reserve, in Sichuan Province. Dissertation for Doctoral Degree. Chengdu: Chengdu University of Technology

    Google Scholar 

  • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys, 31: 357

    Google Scholar 

  • Owen L A, Caffee M W, Bovard K R, Finkel R C, Sharma M C. 2006. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India. GSA Bull, 118: 383–392

    Google Scholar 

  • Owen L A, Dortch J M. 2014. Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen. Quat Sci Rev, 88: 14–54

    Google Scholar 

  • Owen L A, Finkel R C, Caffee M W, Gualtieri L. 2002. Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: Defined by cosmogenic radionuclide dating of moraines. GSA Bull, 114: 593–604

    Google Scholar 

  • Owen L A, Robinson R, Benn D I, Finkel R C, Davis N K, Yi C, Putkonen J, Li D, Murray A S. 2009. Quaternary glaciation of Mount Everest. Quat Sci Rev, 28: 1412–1433

    Google Scholar 

  • Pan B T, Li J J, Chen F H. 1995. The Qinghai-Tibet Plateau: Drivers and amplifiers of global climate change I. Basic characteristics of Cenozoic climate change (in Chinese). J Lanzhou Univ-Nat Sci, 31: 120–128

    Google Scholar 

  • Qiang F, Zhang J Q. 1996. Discovery of the Hipparion sp. at the Kunlun Pass of golmud and quantitative study on neotectonism. J Geomech, 2: 139–148

    Google Scholar 

  • Seong Y B, Owen L A, Bishop M P, Bush A, Clendon P, Copland L, Finkel R, Kamp U, Shroder Jr. J F. 2007. Quaternary glacial history of the Central Karakoram. Quat Sci Rev, 26: 3384–3405

    Google Scholar 

  • Shi Y F, Cui Z J, Su Z. 2006. The Quaternary Glaciations and Environmental Variations in China (in Chinese). Shijiazhuang: Hebei Science and Technology Press

    Google Scholar 

  • Shi Y F, Zheng B X, Li S J, Ye B S. 1995. Studies on altitude and climatic environment in the Middle and East Parts of Tibetan Plateau during Quaternary maximum glaciation (in Chinese). J Glaciol Geocryol, 17: 97–112

    Google Scholar 

  • Stone J O. 2000. Air pressure and cosmogenic isotope production. J Geophys Res, 105: 23753–23759

    Google Scholar 

  • Thompson L G, Yao T, Davis M E, Henderson K A, Mosley-Thompson E, Lin P N, Beer J, Synal H A, Cole-Dai J, Bolzan J F. 1997. Tropical climate instability: the Last Glacial Cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825

    Google Scholar 

  • Wang J, Kassab C, Harbor J M, Caffee M W, Cui H, Zhang G L. 2013. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the Dalijia Shan, northeastern Tibetan Plateau. Quat Res, 79: 439–451

    Google Scholar 

  • Wang J, Raisbeck G, Xu X, Yiou F, Bai S. 2006. In situ cosmogenic 10Be dating of the Quaternary glaciations in the southern Shaluli Mountain on the Southeastern Tibetan Plateau. Sci China Ser D-Earth Sci, 49: 1291–1298

    Google Scholar 

  • Wang S M, Shi Y F, Shen J. 1994. A preliminary study on paleoclimate and paleoenvironmental changes in the eastern part of the Qinghai-Tibet Plateau. In: Sun H L, Zheng D, Liu D S, Su Y F, Li J J, Zhang X S, Li W H, Kong X R, Tang M C, Lu Y Z, eds. Formation and Evolution, Environmental Change and Ecosystem Research on the Qinghai-Tibet Plateau. Bei**g: Science and Technology Press. 236–248

    Google Scholar 

  • Wu G J, Pan B T, Li J J, Guan Q Y, Liu Z Z. 2001. Tectonic-climatic events in eastern Qilian Mountains over the past 0.83 Ma. Sci China Ser D-Earth Sci, 44: 251–260

    Google Scholar 

  • Wu Y Q, Cui Z J, Liu G N, Ge D K. 1999. Glaciation Sequences in the Kunlunshan Pass Area (in Chinese). J Glaciol Geocryol, 21: 71–76

    Google Scholar 

  • Wu Z H, Zhao X T, Jiang W, Wu Z H, Zhu D G. 2003. Dating Result of the Pleistocene Glacial Deposits on the Southeast Foot of Nyaiqentanglha Mountains (in Chinese). J Glaciol Geocryol, 25: 272–274

    Google Scholar 

  • Xu L B, Zhou S Z, Cui J X, Wang J, David M. 2004. Dating of the Pleistocene Glaciations around the Daocheng Ice Cap (in Chinese). J Glaciol Geocryol, 26: 528–534

    Google Scholar 

  • Xu L B, Zhou S Z. 2009. Quaternary glaciations recorded by glacial and fluvial landforms in the Shaluli Mountains, Southeastern Tibetan Plateau. Geomorphology, 103: 268–275

    Google Scholar 

  • Xu X B, Wang J, Chen S T. 2003. Samples selection in terrestrial cosmogenic isotopes dating and extraction of 10Be and 26Al. J Nan**g Norm Univ-Nat Sci, 26: 111–115

    Google Scholar 

  • Yang Y, Cui L F, Xu S, Cao Z P, Zhang S C, Liu C Q. 2022. Deciphering non-steady landscape evolution by in-situ cosmogenic nuclide depth profile. Sci China Earth Sci, 65: 490–502

    Google Scholar 

  • Yao T D, Thompson L, Yang W, Gao Y, Guo X J, Yang X X, Duan K Q, Zhao H B, Xu B Q, Pu J C, Lu A X, Yang X, Dambaru B K, Joswiak D. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2: 663–667

    Google Scholar 

  • Yao T D, Yu W S, Wu G J, Xu B Q, Yang W, Zhao H B, Wang W C, Li S H, Wang N L, Li Zhong Q, Liu S Y, You C. 2019. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings (in Chinese). Chin Sci Bull, 64: 2770–2782

    Google Scholar 

  • Yao X F, Guo Z T, Zhao X T, Wei L Y. 2000. The discovery of ancient red soil in the eastern foothills of the Yulong Mountains and its indication of the uplift of the Qinghai-Tibet Plateau (in Chinese). Chin Sci Bull, 45: 1671–1676

    Google Scholar 

  • Zech R, Abramowski U, Glaser B, Sosin P, Kubik P W, Zech W. 2005. Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quat Res, 64: 212–220

    Google Scholar 

  • Zhang M Y, M J, Zhang Z G, Wang J, Xu X B. 2018. 10Be exposure ages obtained from Quaternary glacial landforms on the Tibetan Plateau in the surrounding area. Acta Geol Sin-Engl Ed, 92: 786–800

    Google Scholar 

  • Zhang Z G, Xu X B, Wang J, Zhao Z J, Bai S B, Chang Z Y. 2014. Last deglaciation climatic fluctuation record by the Palaeo-Daocheng Ice Cap, southeastern Qinghai-Tibetan Plateau. Acta Geol Sin-Engl Ed, 88: 1863–1874

    Google Scholar 

  • Zhang Z G. 2014. Quaternary glacial chronology of Paleo-Daocheng Ice Cap, Southeastern Tibetan Plateau, China (in Chinese). Dissertation for Doctoral Degree. Nan**g: Nan**g Normal University

    Google Scholar 

  • Zhao X T, Qu Y X, Li T S. 1999. Pleistocene glaciations along the Eastern Foot of the Yulong Mountains (in Chinese). J Glaciol Geocryol, 21: 242–248

    Google Scholar 

  • Zhao X T, Wu Z H, Zhu D G, Hu D G. 2002. Quaternary glaciations in the west Nyaiqentanglha Mountains (in Chinese). Quat Sci, 22: 424–433

    Google Scholar 

  • Zheng B X, Ma Q H. 1995. A Study on the geomorphological characteristics and glaciations in Paleo-Daocheng Ice Cap, Western Sichuan (in Chinese). J Glaciol Geocryol, 17: 23–32

    Google Scholar 

  • Zheng B X, Xu Q Q, Shen Y P. 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: Review and speculation. Quat Int, 97–98: 93–101

    Google Scholar 

  • Zheng B X. 2000. Quaternary glaciation and glacier evolution in the Yulong Mount, Yunan (in Chinese). J Glaciol Geocryol, 22: 53–61

    Google Scholar 

  • Zhou S Z, Li J J. 2001. A new study on Qinghai-Tibet Plateau in ice ages. Earth Sci Front, 8: 67–75

    Google Scholar 

  • Zhou S Z, **e J M, Ou X J, Xu L B, Sun Y, Zeng X Z, Wen X X, Chen R R, Yang H, Huang X M, Zhou Y Z, Sun J J. 2021. Evidence for glaciation predating MIS-6 in the eastern Nyainqêntanglha Range, southeastern Tibet. Sci China Earth Sci, 64: 559–570

    Google Scholar 

  • Zhou S Z, Xu L B, Cui J X, Zhang X W, Zhao J D. 2004. Quaternary geomorphological development and environmental evolution of Mount Shaluli (in Chinese). Chin Sci Bull, 49: 2480–2484

    Google Scholar 

  • Zhu D G, Zhao X T, Meng X G, Wu Z H, Shao Z G, Feng X Y, Liu Q S. 2002. The division of quaternary glacial epochs of middle Nyainqentanglha range (in Chinese). Acta Geosci Sin, 23: 335–342

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous reviewers for their critical and constructive comments, which helped improve the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41971009 & 41503054) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA2000300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zheng, J., Cui, H. et al. Cosmogenic 10Be dating of the oldest moraine in the Hengduan Mountains. Sci. China Earth Sci. 66, 2211–2223 (2023). https://doi.org/10.1007/s11430-022-1167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1167-x

Keywords

Navigation