Log in

Refractory humic-like dissolved organic matter fuels microbial communities in deep energy-limiting marine sediments

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Humic-like dissolved organic matter (DOM), usually regarded as refractory, is a major component of DOM in marine sediment pore waters. However, its bio-reactivity remains poorly explored in natural environments, which makes its roles in supporting subsurface microbial communities and regulating long-term carbon cycling elusive. Here, the bio-reactivity of humic-like DOM was evaluated by modeled reaction rates together with its interactions with microbial communities in five sediment cores collected from the eutrophic Pearl River Estuary to the oligotrophic deep-sea basin in the northern South China Sea. We revealed contrasting relationships between humic-like DOM and microbes in the coastal and deep-sea sediments. In eutrophic coastal sediments, specific microbial groups enriched in the deep layers co-varied with humic-like DOM, while most microbial groups were significantly correlated with protein-like DOM, microbial transformation of which likely resulted in the production of humic-like DOM. On the contrary, in energy-limiting deep-sea sediments, over 70% of the microbial groups were found closely correlated with humic-like DOM, a net consumption of which was demonstrated in deep layers. The consumption of humic-like DOM in deep-sea sediments reduced its total production flux in the uppermost ~5-meter layer to about one-tenth of that in coastal sediments, which could consequently decrease the refractory DOM flux to the overlying seawater and influence long-term oceanic carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken G. 2014. Fluorescence and Dissolved Organic Matter: A Chemist’s Perspective. In: Baker A, Reynolds D M, Lead J, Coble P G, Spencer R G M, eds. Aquatic Organic Matter Fluorescence. Cambridge: Cambridge University Press. 35–7

    Google Scholar 

  • Alperin M J, Albert D B, Martens C S. 1994. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim Cosmochim Acta, 58: 4909–4930

    Google Scholar 

  • Bastian M, Heymann S, Jacomy M. 2009. Gephi: An open source software for exploring and manipulating networks. ICWSM, 3: 361–362

    Google Scholar 

  • Bokulich N A, Kaehler B D, Rideout J R, Dillon M, Bolyen E, Knight R, Huttley G A, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6: 1–7

    Google Scholar 

  • Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, Caraballo-Rodríguez A M, Chase J, Cope E K, Da Silva R, Diener C, Dorrestein P C, Douglas G M, Durall D M, Duvallet C, Edwardson C F, Ernst M, Estaki M, Fouquier J, Gauglitz J M, Gibbons S M, Gibson D L, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G A, Janssen S, Jarmusch A K, Jiang L, Kaehler B D, Kang K B, Keefe C R, Keim P, Kelley S T, Knights D, Koester I, Kosciolek T, Kreps J, Langille M G I, Lee J, Ley R, Liu Y X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B D, McDonald D, McIver L J, Melnik A V, Metcalf J L, Morgan S C, Morton J T, Naimey A T, Navas-Molina J A, Nothias L F, Orchanian S B, Pearson T, Peoples S L, Petras D, Preuss M L, Pruesse E, Rasmussen L B, Rivers A, Robeson Ii M S, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song S J, Spear J R, Swafford A D, Thompson L R, Torres P J, Trinh P, Tripathi A, Turnbaugh P J, Ul-Hasan S, van der Hooft J J J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber K C, Williamson C H D, Willis A D, Xu Z Z, Zaneveld J R, Zhang Y, Zhu Q, Knight R, Caporaso J G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 37: 852–857

    Google Scholar 

  • Boyce R E. 1968. Electrical resistivity of modern marine sediments from the Bering Sea. J Geophys Res, 73: 4759–4766

    Google Scholar 

  • Breitzke M. 2006. Physical Properties of Marine Sediments. In: Schulz H D, Zabel M, eds. Marine Geochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg. 27–71

    Google Scholar 

  • Bro R. 1997. PARAFAC. Tutorial and applications. Chemometr Intell Laborat Syst, 38: 149–171

    Google Scholar 

  • Burdige D J, Berelson W M, Coale K H, McManus J, Johnson K S. 1999. Fluxes of dissolved organic carbon from California continental margin sediments. Geochim Cosmochim Acta, 63: 1507–1515

    Google Scholar 

  • Burdige D J, Gardner K G. 1998. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. Mar Chem, 62: 45–64

    Google Scholar 

  • Burdige D J, Kline S W, Chen W. 2004. Fluorescent dissolved organic matter in marine sediment pore waters. Mar Chem, 89: 289–311

    Google Scholar 

  • Burdige D J, Komada T. 2015. Sediment Pore Waters. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. Burlington: Academic Press. 535–577

    Google Scholar 

  • Cai R, Jiao N. 2023. Recalcitrant dissolved organic matter and its major production and removal processes in the ocean. Deep Sea Res Part I-Oceanogr Res Papers, 191: 103922

    Google Scholar 

  • Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods, 13: 581–583

    Google Scholar 

  • Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Lozupone C A, Turnbaugh P J, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA, 108: 4516–4522

    Google Scholar 

  • Catalá T S, Álvarez-Salgado X A, Otero J, Iuculano F, Companys B, Horstkotte B, Romera-Castillo C, Nieto-Cid M, Latasa M, Morán X A G, Gasol J M, Marrasé C, Stedmon C A, Reche I. 2016. Drivers of fluorescent dissolved organic matter in the global epipelagic ocean. Limnol Oceanogr, 61: 1101–1119

    Google Scholar 

  • Catalá T S, Reche I, Fuentes-Lema A, Romera-Castillo C, Nieto-Cid M, Ortega-Retuerta E, Calvo E, Álvarez M, Marrasé C, Stedmon C A, Álvarez-Salgado X A. 2015. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat Commun, 6: 5986

    Google Scholar 

  • Catalán N, Pastor A, Borrego C M, Casas-Ruiz J P, Hawkes J A, Gutiérrez C, Schiller D, Marcé R. 2021. The relevance of environment vs. composition on dissolved organic matter degradation in freshwaters. Limnol Oceanogr, 66: 306–320

    Google Scholar 

  • Chen J, Wiesner M G, Wong H K, Zheng L, Xu L, Zheng S. 1999. Vertical changes of POC flux and indicators of early degradation of organic matter in the South China Sea. Sci China Ser D-Earth Sci, 42: 120–128

    Google Scholar 

  • Chen M, Kim J H, Choi J, Lee Y K, Hur J. 2017a. Biological early diagenesis and insolation-paced paleoproductivity signified in deep core sediment organic matter. Sci Rep, 7: 1581

    Google Scholar 

  • Chen M, Maie N, Parish K, Jaffé R. 2013. Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland. Biogeochemistry, 115: 167–183

    Google Scholar 

  • Chen R F, Bada J L, Suzuki Y. 1993. The relationship between dissolved organic carbon (DOC) and fluorescence in anoxic marine porewaters: Implications for estimating benthic DOC fluxes. Geochim Cosmochim Acta, 57: 2149–2153

    Google Scholar 

  • Chen Z, Gong W, Cai H, Chen Y, Zhang H. 2017b. Dispersal of the Pearl River plume over continental shelf in summer. Estuar Coast Shelf Sci, 194: 252–262

    Google Scholar 

  • Coble P G. 1996. Characterization of marine and terrestrial DOM in sea-water using excitation-emission matrix spectroscopy. Mar Chem, 51: 325–346

    Google Scholar 

  • Coble P G, Del Castillo C E, Avril B. 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res Part II-Topical Stud Oceanogr, 45: 2195–2223

    Google Scholar 

  • Coble P G, Green S A, Blough N V, Gagosian R B. 1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348: 432–435

    Google Scholar 

  • Coble P G, Spencer R G M, Baker A, Reynolds D M. 2014. Aquatic Organic Matter Fluorescence. In: Baker A, Reynolds D M, Lead J, Coble P G, Spencer R G M, eds. Aquatic Organic Matter Fluorescence. Cambridge: Cambridge University Press. 75–122

    Google Scholar 

  • Cornel P K, Summers R S, Roberts P V. 1986. Diffusion of humic acid in dilute aqueous solution. J Colloid Interface Sci, 110: 149–164

    Google Scholar 

  • Cory R M, McKnight D M. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol, 39: 8142–8149

    Google Scholar 

  • D’Andrilli J, McConnell J R. 2021. Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales. J Glaciol, 67: 1028–1042

    Google Scholar 

  • Dai S B, Yang S L, Cai A M. 2008. Impacts of dams on the sediment flux of the Pearl River, southern China. Catena, 76: 36–43

    Google Scholar 

  • DeFrancesco C, Guéguen C. 2021. Long-term trends in dissolved organic matter composition and its relation to sea ice in the Canada Basin, Arctic Ocean (2007–2017). J Geophys Res Oceans, 126: e2020JC016578

    Google Scholar 

  • Du C, Liu Z, Dai M, Kao S J, Cao Z, Zhang Y, Huang T, Wang L, Li Y. 2013. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: Insights from an isopycnal mixing model. Biogeosciences, 10: 6419–6432

    Google Scholar 

  • Fellman J B, Hood E, Spencer R G M. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol Oceanogr, 55: 2452–2462

    Google Scholar 

  • Fox C A, Abdulla H A, Burdige D J, Lewicki J P, Komada T. 2018. Composition of dissolved organic matter in pore waters of anoxic marine sediments analyzed by 1h nuclear magnetic resonance spectroscopy. Front Mar Sci, 5: 172

    Google Scholar 

  • Gan S, Schmidt F, Heuer V B, Goldhammer T, Witt M, Hinrichs K U. 2020. Impacts of redox conditions on dissolved organic matter (DOM) quality in marine sediments off the River Rhône, Western Mediterranean Sea. Geochim Cosmochim Acta, 276: 151–169

    Google Scholar 

  • Goslee S C, Urban D L. 2007. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Soft, 22: 1–9

    Google Scholar 

  • Hansen A M, Kraus T E C, Pellerin B A, Fleck J A, Downing B D, Bergamaschi B A. 2016. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol Oceanogr, 61: 1015–1032

    Google Scholar 

  • Harrell Jr F E. 2021. Hmisc: Harrell Miscellaneous. R package version 4.60. https://CRAN.R-project.org/package=Hmisc

  • He B, Dai M, Huang W, Liu Q, Chen H, Xu L. 2010. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions. Biogeosciences, 7: 3343–3362

    Google Scholar 

  • He C, He D, Chen C, Shi Q. 2022. Application of Fourier transform ion cyclotron resonance mass spectrometry in molecular characterization of dissolved organic matter. Sci China Earth Sci, 65: 2219–2236

    Google Scholar 

  • He Y, Li M, Perumal V, Feng X, Fang J, **e J, Sievert S M, Wang F. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol, 1: 16035

    Google Scholar 

  • Hedges J I, Clark W A, Come G L. 1988. Organic matter sources to the water column and surficial sediments of a marine bay. Limnol Oceanogr, 33: 1116–1136

    Google Scholar 

  • Hedges J I, Keil R G. 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar Chem, 49: 81–115

    Google Scholar 

  • Herzsprung P, von Tümpling W, Hertkorn N, Harir M, Büttner O, Bravidor J, Friese K, Schmitt-Kopplin P. 2012. Variations of DOM quality in inflows of a drinking water reservoir: Linking of van Krevelen diagrams with eemf spectra by rank correlation. Environ Sci Technol, 46: 5511–5518

    Google Scholar 

  • Holland A, McInerney P J, Shackleton M E, Rees G N, Bond N R, Silvester E. 2020. Dissolved organic matter and metabolic dynamics in dryland lowland rivers. SpectroChim Acta Part A-Mol Biomol Spectr, 229: 117871

    Google Scholar 

  • Hu T, Luo M, Wünsch U J, He D, Gieskes J, Xu Y, Fang J, Chen D. 2021. Probing sedimentary DOM in the deepest sector of Earth’s surface. Mar Chem, 237: 104033

    Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org GeoChem, 40: 706–719

    Google Scholar 

  • Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599

    Google Scholar 

  • Kellerman A M, Kothawala D N, Dittmar T, Tranvik L J. 2015. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat Geosci, 8: 454–457

    Google Scholar 

  • Kida M, Kojima T, Tanabe Y, Hayashi K, Kudoh S, Maie N, Fujitake N. 2019. Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams. Water Res, 163: 114901

    Google Scholar 

  • Kim J, Kim Y, Kang H W, Kim S H, Rho T K, Kang D J. 2020. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter. Mar Chem, 218: 103720

    Google Scholar 

  • Kim J, Kim Y, Park S E, Kim T H, Kim B G, Kang D J, Rho T K. 2022. Impact of aquaculture on distribution of dissolved organic matter in coastal Jeju Island, Korea, based on absorption and fluorescence spectroscopy. Environ Sci Pollut Res, 29: 553–563

    Google Scholar 

  • Komada T, Reimers C E, Luther Iii G W, Burdige D J. 2004. Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments. Geochim Cosmochim Acta, 68: 4099–4111

    Google Scholar 

  • Kothawala D N, von Wachenfeldt E, Koehler B, Tranvik L J. 2012. Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci Total Environ, 433: 238–246

    Google Scholar 

  • Kowalczuk P, Durako M J, Young H, Kahn A E, Cooper W J, Gonsior M. 2009. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability. Mar Chem, 113: 182–196

    Google Scholar 

  • Lamb A L, Wilson G P, Leng M J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using 513C and C/N ratios in organic material. Earth-Sci Rev, 75: 29–57

    Google Scholar 

  • Lambert T, Bouillon S, Darchambeau F, Massicotte P, Borges A V. 2016. Shift in the chemical composition of dissolved organic matter in the Congo River network. Biogeosciences, 13: 5405–5420

    Google Scholar 

  • Lee D, Kwon M, Ahn Y, Jung Y, Nam S N, Choi I, Kang J W. 2018. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals. Water Res, 144: 13–25

    Google Scholar 

  • Liu R, Wei X, Song W, Wang L, Cao J, Wu J, Thomas T, ** T, Wang Z, Wei W, Wei Y, Zhai H, Yao C, Shen Z, Du J, Fang J. 2022. Novel Chloroflexi genomes from the deepest ocean reveal metabolic strategies for the adaptation to deep-sea habitats. Microbiome, 10: 75

    Google Scholar 

  • Maie N, Scully N M, Pisani O, Jaffé R. 2007. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res, 41: 563–570

    Google Scholar 

  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J, 17: 10

    Google Scholar 

  • Murphy K R, Hambly A, Singh S, Henderson R K, Baker A, Stuetz R, Khan S J. 2011. Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. Environ Sci Technol, 45: 2909–2916

    Google Scholar 

  • Murphy K R, Stedmon C A, Graeber D, Bro R. 2013. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods, 5: 6557–6566

    Google Scholar 

  • Murphy K R, Stedmon C A, Waite T D, Ruiz G M. 2008. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem, 108: 40–58

    Google Scholar 

  • Murphy K R, Stedmon C A, Wenig P, Bro R. 2014. OpenFluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal Methods, 6: 658–661

    Google Scholar 

  • Ni M, Li S. 2023. Ultraviolet humic-like component contributes to riverine dissolved organic matter biodegradation. J Environ Sci, 124: 165–175

    Google Scholar 

  • Nieto-Cid M, Álvarez-Salgado X A, PÉrez F F. 2006. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr, 51: 1391–1400

    Google Scholar 

  • Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin R P, O’Hara R B, Simpson L G, Solymos P, Stevens H M H, Szoecs E, Wagner H. 2020. Vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan

  • Oni O E, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs K U, Friedrich M W. 2015. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland mud area, North Sea. Front Microbiol, 6: 1290

    Google Scholar 

  • Osburn C L, Boyd T J, Montgomery M T, Bianchi T S, Coffin R B, Paerl H W. 2016. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front Mar Sci, 2: 127

    Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: Machine learning in Python. J Mach Learn Res, 12: 2825–2830, doi: https://doi.org/10.48550/ar**v.1201.0490

    Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B M, Ludwig W, Peplies J, Glockner F O. 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res, 35: 7188–7196

    Google Scholar 

  • Qian W, Gan J, Liu J, He B, Lu Z, Guo X, Wang D, Guo L, Huang T, Dai M. 2018. Current status of emerging hypoxia in a eutrophic estuary: The lower reach of the Pearl River Estuary, China. Estuar Coast Shelf Sci, 205: 58–67

    Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source tool for metagenomics. Peer J, 4: e2584

    Google Scholar 

  • Schutte C A, Ahmerkamp S, Wu C S, Seidel M, de Beer D, Cook P L M, Joye S B. 2019. In: Perillo G M E, Wolanski E, Cahoon D R, Hopkinson C S, eds. Chapter 12—Biogeochemical Dynamics of Coastal Tidal Flats. 2nd ed. Amsterdam: Elsevier B. V. 407–440

    Google Scholar 

  • Shakil S, Tank S E, Kokelj S V, Vonk J E, Zolkos S. 2020. Particulate dominance of organic carbon mobilization from thaw slumps on the Peel Plateau, NT: Quantification and implications for stream systems and permafrost carbon release. Environ Res Lett, 15: 114019

    Google Scholar 

  • Søndergaard M, Stedmon C A, Borch N H. 2003. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability. Ophelia, 57: 161–176

    Google Scholar 

  • Stedmon C A, Cory R M. 2014. Biological Origins and Fate of Fluorescent Dissolved Organic Matter in Aquatic Environments. In: Baker A, Reynolds D M, Lead J, Coble P G, Spencer R G M, eds. Aquatic Organic Matter Fluorescence. Cambridge: Cambridge University Press. 278–300

    Google Scholar 

  • Stedmon C A, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem, 82: 239–254

    Google Scholar 

  • Stookey L L. 1970. Ferrozine—A new spectrophotometric reagent for iron. Anal Chem, 42: 779–781

    Google Scholar 

  • Stubbins A, Lapierre J F, Berggren M, Prairie Y T, Dittmar T, del Giorgio P A. 2014. What’s in an EEM? Molecular signatures associated with dissolved organic fluorescence in Boreal Canada. Environ Sci Technol, 48: 10598–10606

    Google Scholar 

  • Tranvik L J, Bertilsson S. 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett, 4: 458–463

    Google Scholar 

  • Vilgé-Ritter A, Masion A, Boulangé T, Rybacki D, Bottero J Y. 1999. Removal of natural organic matter by coagulation-flocculation: A Pyrolysis-GC-MS study. Environ Sci Technol, 33: 3027–3032

    Google Scholar 

  • Wagner S, Jaffé R, Cawley K, Dittmar T, Stubbins A. 2015. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system. Front Chem, 3: 66

    Google Scholar 

  • Wang G, Spivack A J, Rutherford S, Manor U, D’Hondt S. 2008. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim Cosmochim Acta, 72: 3479–3488

    Google Scholar 

  • Wang K, Pang Y, He C, Li P, **ao S, Sun Y, Pan Q, Zhang Y, Shi Q, He D. 2019. Optical and molecular signatures of dissolved organic matter in **angxi Bay and mainstream of Three Gorges Reservoir, China: Spatial variations and environmental implications. Sci Total Environ, 657: 1274–1284

    Google Scholar 

  • Wang W, Tao J, Liu H, Li P, Chen S, Wang P, Zhang C. 2020. Contrasting bacterial and archaeal distributions reflecting different geochemical processes in a sediment core from the Pearl River Estuary. AMB Expr, 10: 16

    Google Scholar 

  • Wang W, Tao J, Yu K, He C, Wang J, Li P, Chen H, Xu B, Shi Q, Zhang C. 2021. Vertical stratification of dissolved organic matter linked to distinct microbial communities in subtropic estuarine sediments. Front Microbiol, 12: 697860

    Google Scholar 

  • Wasmund K, Schreiber L, Lloyd K G, Petersen D G, Schramm A, Stepanauskas R, Jørgensen B B, Adrian L. 2014. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J, 8: 383–397

    Google Scholar 

  • Wei B, Mollenhauer G, Hefter J, Grotheer H, Jia G. 2020. Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf. Geochim Cosmochim Acta, 282: 324–339

    Google Scholar 

  • Weishaar J L, Aiken G R, Bergamaschi B A, Fram M S, Fujii R, Mopper K. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol, 37: 4702–4708

    Google Scholar 

  • Weiss S, Xu Z Z, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld J R, Vázquez-Baeza Y, Birmingham A, Hyde E R, Knight R. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5: 27

    Google Scholar 

  • Williams C J, Frost P C, Xenopoulos MA. 2013. Beyond best management practices: Pelagic biogeochemical dynamics in urban stormwater ponds. Ecol Appl, 23: 1384–1395

    Google Scholar 

  • Williams C J, Yamashita Y, Wilson H F, Jaffé R, Xenopoulos M A. 2010. Unraveling the role of land use and microbial activity in sha** dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr, 55: 1159–1171

    Google Scholar 

  • **e R, Wang Y, Chen Q, Guo W, Jiao N, Zheng Q. 2020. Coupling between carbon and nitrogen metabolic processes mediated by coastal microbes in synechococcus-derived organic matter addition incubations. Front Microbiol, 11: 1041

    Google Scholar 

  • Xu Y, Li X, Luo M, **ao W, Fang J, Rashid H, Peng Y, Li W, Wenzhöfer F, Rowden A A, Glud R N. 2021. Distribution, source, and burial of sedimentary organic carbon in kermadec and atacama trenches. J Geophys Res-Biogeosci, 126: e2020JG006189

    Google Scholar 

  • Yamashita Y, Cory R M, Nishioka J, Kuma K, Tanoue E, Jaffé R. 2010a. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res Part II-Topical Stud Oceanogr, 57: 1478–1485

    Google Scholar 

  • Yamashita Y, Maie N, Briceno H, Jaffé R. 2010b. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. J Geophys Res, 115: G00F10

    Google Scholar 

  • Yamashita Y. 2004. In situ production of chromophoric dissolved organic matter in coastal environments. Geophys Res Lett, 31: L14302

    Google Scholar 

  • Yu T, Wu W, Liang W, Lever M A, Hinrichs K U, Wang F. 2018. Growth ofsedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA, 115: 6022–6027

    Google Scholar 

  • Zhao B, Yao P, Bianchi T S, Arellano A R, Wang X, Yang J, Su R, Wang J, Xu Y, Huang X, Chen L, Ye J, Yu Z. 2018. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas. Chem Geol, 495: 104–117

    Google Scholar 

  • Zhou Z, Pan J, Wang F, Gu J D, Li M. 2018. Bathyarchaeota: Globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev, 42: 639–655

    Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Kai Wang for the technical support on DOC concentration and EEM measurements at Zhejiang University. We also thank Dr. Urban J. Wünsch from Technical University of Denmark for helpful suggestions on using the drEEM toolbox. We are grateful to the captain and crew members of the German R/V SONNE cruise SO269, especially Dr. Yinzhao Wang from Shanghai Jiao Tong University, for supporting the sample collection. Raw Illumina sequence data of the 16S rRNA gene generated in this study have been deposited in the NODE (the National Omics Data Encyclopedia) database under the project number OEP003598. The bathymetry data were obtained from the Etopo1 dataset at https://www.ngdc.noaa.gov/mgg/global/global.html. The coastline data were obtained from the GSHHG dataset at https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html. All other data discussed in the paper are available in the paper or in the Supplementary Information. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42141003, 41921006 & 41867057), the National Key Research and Development Program of China (Grant No. 2020YFA0608300), the “Shanghai Jiao Tong University 2030” Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. SMSEGL20SC01), and the Center for Ocean Research in Hong Kong and Macau (CORE; CORE is a joint research center for ocean research between QNLM and HKUST). The SO269 cruise (SO-CLIS-South China Sea-natural laboratory under climatic and human induced stress, BMBFFKZ 03G0269) was a contribution to the bilateral Sino-German project MEGAPOL - Megacity’s fingerprint in Chinese marginal seas: Investigation of pollutant fingerprints and dispersal within the framework of WTZ China of the German government and was founded by BMBF (Grant No. 03F0786A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng** Wang.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Sui, W., Wang, J. et al. Refractory humic-like dissolved organic matter fuels microbial communities in deep energy-limiting marine sediments. Sci. China Earth Sci. 66, 1738–1756 (2023). https://doi.org/10.1007/s11430-022-1123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1123-y

Keywords

Navigation