Log in

Geochemical behavior of lithium isotopes in a small mountainous river of the Tibetan Plateau: A case study from Niyang River

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Lithium (Li) and its isotopes are potential tracers of silicate weathering in river basins. However, the relationship between the Li isotopic composition (δ7Li) in rivers and silicate weathering intensity remains unclear. This study analyzed the Li concentration and isotopic composition in river waters from the Niyang River, southern Tibetan Plateau. The results show that these samples have significantly variable Li concentrations (0.31-7.4 μg/L) and δ7Li values (+7.0-+20.7%o, n=28), and high δ7Li values are found in several tributaries. Calculations indicate that dissolved Li in river water is predominantly derived from silicate weathering and geothermal water. With the exception of certain tributaries, geothermal water contributes 68% to 85% of the dissolved Li. Geothermal waters have low δ7Li values (−0.9-+2.9%o) in the Tibetan Plateau. Differences in the proportional contribution of dissolved Li in river samples from silicate weathering and geothermal water may be the main reason for the spatiotemporal variation in riverine δ7Li values. The samples have higher δ7Li values when the dissolved Li in the water samples is mainly derived from silicate weathering contributions, and lower values when the contribution from geothermal waters is high. Furthermore, the interaction of dissolved Li from geothermal water with secondary minerals results in Li isotopic fractionation, which may contribute to variations in river water δ7Li. It is accepted that the lower weathering intensity in orogenic (or mountainous) belts compared to floodplains is the main controlling factor for lower δ7Li values in the rivers. This study indicates that geothermal water input may cover the Li isotope signal of silicate weathering in river water, which in turn, affects the accurate understanding of the relationship between riverine δ7Li values and the silicate weathering intensity. Therefore, whether the lower δ7Li values of river waters in hydrothermal-rich orogenic belts are mainly controlled by the regional weathering intensity or the input of hot springs (or both) requires in-depth study, and this is the key to accurately establishing the relationship between the Li isotopic composition and silicate weathering intensity in the river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohlin M S, Bickle M J. 2019. The reactive transport of Li as a monitor of weathering processes in kinetically limited weathering regimes. Earth Planet Sci Lett, 511: 233–243

    Google Scholar 

  • Choi H B, Ryu J S, Shin W J, Vigier N. 2019. The impact of anthropogenic inputs on lithium content in river and tap water. Nat Commun, 10: 5371

    Google Scholar 

  • Davaciren, Basangchilie, Baima, Qimeiduoji. 2008. Hydrologic characteristics in the Niyang River Basin (in Chinese). J China Hydrol, 28: 92–94

    Google Scholar 

  • Dellinger M, Gaillardet J, Bouchez J, Calmels D, Louvat P, Dosseto A, Gorge C, Alanoca L, Maurice L. 2015. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochim Cosmochim Acta, 164: 71–93

    Google Scholar 

  • Golla J K, Kuessner M L, Henehan M J, Bouchez J, Rempe D M, Druhan J L. 2021. The evolution of lithium isotope signatures in fluids draining actively weathering hillslopes. Earth Planet Sci Lett, 567: 116988

    Google Scholar 

  • Gou L F, ** Z, Pogge von Strandmann P A E, Li G, Qu Y X, **ao J, Deng L, Galy A. 2019. Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation. Geochim Cosmochim Acta, 248: 88–108

    Google Scholar 

  • He M Y, Dong J B, ** Z, Liu C Y, **ao J, Zhang F, Sun H, Zhao Z Q, Gou L F, Liu W G, Luo C G, Song Y G, Ma L, Deng L. 2021. Pedogenic processes in loess-paleosol sediments: Clues from Li isotopesof lea-chate in Luochuan loess. Geochim Cosmochim Acta, 299: 151–162

    Google Scholar 

  • Henchiri S, Clergue C, Dellinger M, Gaillardet J, Louvat P, Bouchez J. 2014. The influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas. Procedia Earth Planet Sci, 10: 223–230

    Google Scholar 

  • Hindshaw R S, Teisserenc R, Le Dantec T, Tananaev N. 2019. Seasonal change of geochemical sources and processes in the Yenisei River: A Sr, Mg and Li isotope study. Geochim Cosmochim Acta, 255: 222–236

    Google Scholar 

  • Huh Y, Chan L H, Zhang L, Edmond J M. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochim Cosmochim Acta, 62: 2039–2051

    Google Scholar 

  • Kisakürek B, James R H, Harris N B W. 2005. Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth Planet Sci Lett, 237: 387–401

    Google Scholar 

  • Kisakürek B, Widdowson M, James R H. 2004. Behaviour of Li isotopes during continental weathering: The Bidar laterite profile, India. Chem Geol, 212: 27–44

    Google Scholar 

  • Lara M C, Buss H L, Henehan M J, Schuessler J A, McDowell W H. 2022. Secondary minerals drive extreme lithium isotope fractionation during tropical weathering. J Geophys Res-Earth Surf, 127: e2021JF006366

    Google Scholar 

  • Li W, Liu X M, Chadwick O A. 2020. Lithium isotope behavior in Hawaiian regoliths: Soil-atmosphere-biosphere exchanges. Geochim Cosmochim Acta, 285: 175–192

    Google Scholar 

  • Li W, Liu X M. 2020. Experimental investigation of lithium isotope fractionation during kaolinite adsorption: Implications for chemical weathering. Geochim Cosmochim Acta, 284: 156–172

    Google Scholar 

  • Lin J, Liu Y, Hu Z, Yang L, Chen K, Chen H, Zong K, Gao S. 2016. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J Anal At Spectrom, 31: 390–397

    Google Scholar 

  • Liu C Q, Zhao Z Q, Wang Q, Gao B. 2011. Isotope compositions of dissolved lithium in the rivers **shajiang, Lancangjiang, and Nujiang: Implications for weathering in Qinghai-Tibet Plateau. Appl Geochem, 26: S357–S359

    Google Scholar 

  • Liu X M, Rudnick R L, McDonough W F, Cummings M L. 2013. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts. Geochim Cosmochim Acta, 115: 73–91

    Google Scholar 

  • Liu X M, Wanner C, Rudnick R L, McDonough W F. 2015. Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts. Earth Planet Sci Lett, 409: 212–224

    Google Scholar 

  • Liu X, Zhang D, Gao S, Wu J, Zhao Z Q. 2018. Chemical weathering and CO2 consumption flux in Tibetan Plateau: A case of Niyang River catchment. Chin J Ecol, 37: 688–696

    Google Scholar 

  • Ma T, Weynell M, Li S L, Liu Y, Chetelat B, Zhong J, Xu S, Liu C Q. 2020. Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments. Geochim Cosmochim Acta, 280: 46–65

    Google Scholar 

  • Meng J L, Guo J Y, Wu J, Zhao Z Q. 2020. Seasonal variations of chemical weathering and its controlling factors of Niyang River in the Tibetan Plateau. J Earth Environ, 11: 190–203

    Google Scholar 

  • Millot R, Vigier N, Gaillardet J. 2010. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim Cosmochim Acta, 74: 3897–3912

    Google Scholar 

  • Murphy M J, Porcelli D, Pogge von Strandmann P A E, Hirst C A, Kutscher L, Katchinoff J A, Mörth C M, Maximov T, Andersson P S. 2019. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes. Geochim Cosmochim Acta, 245: 154–171

    Google Scholar 

  • Penniston-Dorland S, Liu X M, Rudnick R L. 2017. Lithium isotope geochemistry. Rev Mineral Geochem, 82: 165–217

    Google Scholar 

  • Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett, 214: 327–339

    Google Scholar 

  • Pogge von Strandmann P A E, Burton K W, Opfergelt S, Genson B, Guicharnaud R A, Gislason S R. 2021. The lithium isotope response to the variable weathering of soils in Iceland. Geochim Cosmochim Acta, 313: 55–73

    Google Scholar 

  • Pogge von Strandmann P A E, Burton K W, James R H, van Calsteren P, Gislason S R, Mokadem F. 2006. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planet Sci Lett, 251: 134–147

    Google Scholar 

  • Pogge von Strandmann P A E, Frings P J, Murphy M J. 2017. Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. Geochim Cosmochim Acta, 198: 17–31

    Google Scholar 

  • Pogge von Strandmann P A E, Kasemann S A, Wimpenny J B. 2020. Lithium and lithium isotopes in Earth’s surface cycles. Elements, 16: 253–258

    Google Scholar 

  • Pogge von Strandmann P A E, Liu X, Liu C Y, Wilson D J, Hammond S J, Tarbuck G, Aristilde L, Krause A J, Fraser W T. 2022. Lithium isotope behaviour during basalt weathering experiments amended with organic acids. Geochim Cosmochim Acta, 328: 37–57

    Google Scholar 

  • Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122

    Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. Treatise in Geochemistry: The Crust. Oxford: Elsevier. 1–64

    Google Scholar 

  • Rudnick R L, Tomascak P B, Njo H B, Gardner L R. 2004. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol, 212: 45–57

    Google Scholar 

  • Sauzéat L, Rudnick R L, Chauvel C, Garçon M, Tang M. 2015. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet Sci Lett, 428: 181–192

    Google Scholar 

  • Teng F Z, Li W Y, Rudnick R L, Gardner L R. 2010. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet Sci Lett, 300: 63–71

    Google Scholar 

  • Teng F Z, McDonough W F, Rudnick R L, Dalpé C, Tomascak P B, Chappell B W, Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta, 68: 4167–4178

    Google Scholar 

  • Teng F, Wang S, Moynier F. 2019. Tracing the formation and differentiation of the Earth by non-traditional stable isotopes. Sci China Earth Sci, 62: 1702–1715

    Google Scholar 

  • Tomascak P B, Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry. Berlin: Springer

    Google Scholar 

  • Wang Q L, Chetelat B, Zhao Z Q, Ding H, Li S L, Wang B L, Li J, Liu X L. 2015. Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion. Geochim Cosmochim Acta, 151: 117–132

    Google Scholar 

  • Wanner C, Sonnenthal E L, Liu X M. 2014. Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering? Chem Geol, 381: 154–167

    Google Scholar 

  • Weynell M, Wiechert U, Schuessler J A. 2017. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau. Geochim Cosmochim Acta, 213: 155–177

    Google Scholar 

  • Weynell M, Wiechert U, Schuessler J A. 2021. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau. Geochim Cosmochim Acta, 293: 205–223

    Google Scholar 

  • Wimpenny J, James R H, Burton K W, Gannoun A, Mokadem F, Gislason S R. 2010. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth Planet Sci Lett, 290: 427–437

    Google Scholar 

  • Winnick M J, Druhan J L, Maher K. 2022. Weathering intensity and lithium isotopes: A reactive transport perspective. Am J Sci, 322: 647–682

    Google Scholar 

  • Xu Z, Li T, Li G, Hedding D W, Wang Y, Gou L F, Zhao L, Chen J. 2022. Lithium isotopic composition of soil pore water: Responses to evapotranspiration. Geology, 50: 194–198

    Google Scholar 

  • Yan Y N, Zhang J W, Zhang D, Li X D, Wu J, Ding H, Zhao Z Q. 2022. Chemical weathering characteristics and controls in the Yarlung Tsangpo River Basin: Evidence from hydrochemical composition. Appl Geochem, 146: 105479

    Google Scholar 

  • Zhang F, Dellinger M, Hilton R G, Yu J, Allen M B, Densmore A L, Sun H, ** Z. 2022. Hydrological control of river and seawater lithium isotopes. Nat Commun, 13: 3359

    Google Scholar 

  • Zhang J W, Meng J L, Zhao Z Q, Liu C Q. 2019. Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasma-mass spectrometry. Chin J Anal Chem, 47: 415–422

    Google Scholar 

  • Zhang J W, Yan Y N, Zhao Z Q, Li X D, Guo J Y, Ding H, Cui L F, Meng J L, Liu C Q. 2021b. Spatial and seasonal variations of dissolved arsenic in the Yarlung Tsangpo River, southern Tibetan Plateau. Sci Total Environ, 760: 143416

    Google Scholar 

  • Zhang J W, Yan Y N, Zhao Z Q, Liu X M, Li X D, Zhang D, Ding H, Meng J L, Liu C Q. 2022. Spatiotemporal variation of Li isotopes in the Yarlung Tsangpo River basin (upper reaches of the Brahmaputra River): Source and process. Earth Planet Sci Lett, 600: 117875

    Google Scholar 

  • Zhang J W, Zhao Z Q, Li X D, Yan Y N, Lang Y C, Ding H, Cui L F, Meng J L, Liu C Q. 2021c. Extremely enrichment of 7Li in highly weathered saprolites developed on granite from Huizhou, southern China. Appl Geochem, 125: 104825

    Google Scholar 

  • Zhang J W, Zhao Z Q, Yan Y N, Cui L F, Wang Q L, Meng J L, Li X D, Liu C Q. 2021a. Lithium and its isotopes behavior during incipient weathering of granite in the eastern Tibetan Plateau, China. Chem Geol, 559: 119969

    Google Scholar 

  • Zhang T, Cai W T, Li R Z, Zhang Z Y, Geng T T, Bian C, Zhao M, Cai Y M. 2017. Major ionic features and their possible controls in the water of the Niyang River Basin (in Chinese). Environ Sci, 38: 4537–4545

    Google Scholar 

  • Zhang X Y, Saldi G D, Schott J, Bouchez J, Kuessner M, Montouillout V, Henehan M, Gaillardet J. 2021. Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater. Geochim Cosmochim Acta, 292: 333–347

    Google Scholar 

  • Zhong J, Li S, Li Z, Zhu X, Yi Y, Ma T, Xu S, Liu C. 2022. Metamorphic fluxes of water and carbon in rivers of the eastern Qinghai-Tibetan Plateau. Sci China Earth Sci, 65: 652–661

    Google Scholar 

  • Zhou L. 2012. Characteristics of the Typical Geothermal Waters in Central Tibet. Dissertation for Master’s Degree. Bei**g: China University of Geosciences (Bei**g). 1–71

    Google Scholar 

Download references

Acknowledgements

We thank Junlun MENG and Zuxin YE for assisting with Li isotope analysis and the graphic works. We thank two anonymous reviewers for suggesting significant improvements to this manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 42003007), the Natural Science Foundation of Shaanxi Province (Grant Nos. 2022JZ-19 and 2022JQ-229), and the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (Grant No. 300102272808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yan, Y., Zhao, Z. et al. Geochemical behavior of lithium isotopes in a small mountainous river of the Tibetan Plateau: A case study from Niyang River. Sci. China Earth Sci. 66, 1853–1864 (2023). https://doi.org/10.1007/s11430-022-1095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1095-6

Keywords

Navigation