Log in

Molecular characterization of organic matter transformation mediated by microorganisms under anoxic/hypoxic conditions

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Dissolved organic matter (DOM) in the ocean is one of the largest carbon pools on Earth. Microbial metabolism is an important process that shapes the marine DOM pool. Current studies on the interactions between microorganisms and DOM focus mainly on oxic environments. Few studies have addressed the molecular characteristics of DOM in microbial-mediated transformation under anoxic/hypoxic conditions. As a result of deteriorating water quality due to eutrophication and global warming, anoxia occurs frequently in coastal waters. In this study, we performed an experiment to investigate changes in microbial community responses and the molecular characteristics of DOM in microbial-mediated transformation under hypoxic conditions. We compared microbial-mediated DOM transformation at different dissolved oxygen levels (7, 5, and 2 mg L −1) and in different media (natural and artificial seawater with and without laminarin). We also investigated differences in DOM composition between groups using spectroscopic analysis and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. The results showed decreased microbial metabolic activity and delayed community succession at low oxygen (⩽2 mg L −1) in natural seawater supplemented with laminarin. The growth of strictly aerobic bacteria such as Pseudomonadaceae and Sphingomonadaceae was inhibited and the total organic carbon utilization rate was reduced by 36.9–6.7% from 4 to 32 days. Moreover, tyrosine-like and tryptophan-like components were preserved, while DOM humification and modified aromaticity index were significantly reduced under low oxygen conditions. This experiment provides justification for further study of the processes and mechanisms of improved labile DOM preservation in anoxic estuarine and coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnosti C. 2008. Functional differences between Arctic seawater and sedimentary microbial communities: Contrasts in microbial hydrolysis of complex substrates. FEMS Microbiol Ecol, 66: 343–351

    Article  Google Scholar 

  • Arnosti C, Fuchs B M, Amann R, Passow U. 2012. Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean. Front Microbio, 3: 425

    Article  Google Scholar 

  • Arnosti C, Steen AD. 2013. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: Contrasts in carbon processing by pelagic microbial communities. Front Microbiol, 4: 318

    Article  Google Scholar 

  • Arthur M A, Schlanger S O, Jenkyns H C. 1987. The Cenomanian-Tur-onian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. SP, 26: 401–420

    Article  Google Scholar 

  • Arthur M A, Dean W E, Pratt L M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335: 714–717

    Article  Google Scholar 

  • Arthur M A, Sageman B B. 1994. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annu Rev Earth Planet Sci, 22: 499–551

    Article  Google Scholar 

  • Barrón C, Duarte C M. 2015. Dissolved organic carbon pools and export from the coastal ocean. Glob Biogeochem Cycle, 29: 1725–1738

    Article  Google Scholar 

  • Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen M H, Harder T, Hinrichs K U, Hehemann J H. 2020. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA, 117: 6599–6607

    Article  Google Scholar 

  • Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, Caraballo-Rodriguez A M, Chase J, Cope E K, Da Silva R, Diener C, Dorrestein P C, Douglas G M, Durall D M, Duvallet C, Edwardson C F, Ernst M, Estaki M, Fouquier J, Gauglitz J M, Gibbons S M, Gibson D L, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G A, Janssen S, Jarmusch A K, Jiang L, Kaehler B D, Kang K B, Keefe C R, Keim P, Kelley S T, Knights D, Koester I, Kosciolek T, Kreps J, Langille M G I, Lee J, Ley R, Liu Y X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B D, McDonald D, McIver L J, Melnik A V, Metcalf J L, Morgan S C, Morton J T, Naimey A T, Navas-Molina J A, Nothias L F, Orchanian S B, Pearson T, Peoples S L, Petras D, Preuss M L, Pruesse E, Rasmussen L B, Rivers A, Robeson Ii M S, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song S J, Spear J R, Swafford A D, Thompson L R, Torres P J, Trinh P, Tripathi A, Turnbaugh P J, Ul-Hasan S, van der Hooft J J J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber K C, Williamson C H D, Willis A D, Xu Z Z, Zaneveld J R, Zhang Y, Zhu Q, Knight R, Caporaso J G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 37: 852–857

    Article  Google Scholar 

  • Breitburg D, Levin L A, Oschlies A, Grégoire M, Chavez F P, Conley D J, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto G S, Limburg K E, Montes I, Naqvi S W A, Pitcher G C, Rabalais N N, Roman M R, Rose K A, Seibel B A, Telszewski M, Yasuhara M, Zhang J. 2018. Declining oxygen in the global ocean and coastal waters. Science, 359: eaam7240

    Article  Google Scholar 

  • Buchan A, LeCleir G R, Gulvik C A, Gonzalez J M. 2014. Master re-cyclers: Features and functions of bacteria associated with phyto-plankton blooms. Nat Rev Microbiol, 12: 686–698

    Article  Google Scholar 

  • Burdige D J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev, 107: 467–485

    Article  Google Scholar 

  • Cammack W K L, Kalff J, Prairie Y T, Smith E M. 2004. Fluorescent dissolved organic matter in lakes: Relationships with heterotrophic metabolism. Limnol Oceanogr, 49: 2034–2045

    Article  Google Scholar 

  • Canfield D E, Kristensen E, Thamdrup B. 2005a. Heterotrophic carbon metabolism. Adv Mar Biol, 48: 129–162

    Article  Google Scholar 

  • Canfield D E, Kristensen E, Thamdrup B. 2005b. The sulfur cycle. Adv Mar Biol, 48: 313–381

    Article  Google Scholar 

  • Canfield D E. 1994. Factors influencing organic carbon preservation in marine sediments. Chem Geol, 114: 315–329

    Article  Google Scholar 

  • Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later Neopro-terozoic deep-water chemistry. Science, 321: 949–952

    Article  Google Scholar 

  • Chen Q, Chen F, Gonsior M, Li Y, Wang Y, He C, Cai R, Xu J, Wang Y, Xu D, Sun J, Zhang T, Shi Q, Jiao N, Zheng Q. 2021. Correspondence between DOM molecules and microbial community in a subtropical coastal estuary on a spatiotemporal scale. Environ Int, 154: 106558

    Article  Google Scholar 

  • Chen Q, Lønborg C, Chen F, Gonsior M, Li Y, Cai R, He C, Chen J, Wang Y, Shi Q, Jiao N, Zheng Q. 2022. Increased microbial and substrate complexity result in higher molecular diversity of the dissolved organic matter pool. Limnol Oceanogr, 67: 2360–2373

    Article  Google Scholar 

  • Cloern J E, Abreu P C, Carstensen J, Chauvaud L, Elmgren R, Grall J, Greening H, Johansson J O R, Kahru M, Sherwood E T, Xu J, Yin K. 2016. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Glob Change Biol, 22: 513–529

    Article  Google Scholar 

  • Coble P G. 1996. Characterization of marine and terrestrial DOM in sea-water using excitation-emission matrix spectroscopy. Mar Chem, 51: 325–346

    Article  Google Scholar 

  • Coble P G, Green S A, Blough N V, Gagosian R B. 1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectro-scopy. Nature, 348: 432–435

    Article  Google Scholar 

  • Dagg M J, Ammerman J W, Amon R M W, Gardner W S, Green R E, Lohrenz S E. 2007. A review of water column processes influencing hypoxia in the northern Gulf of Mexico. Estuaries Coasts, 30: 735–752

    Article  Google Scholar 

  • Deutsch C, Berelson W, Thunell R, Weber T, Tems C, McManus J, Crusius J, Ito T, Baumgartner T, Ferreira V, Mey J, van Geen A. 2014. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345: 665–668

    Article  Google Scholar 

  • Diaz R J. 2001. Overview ofhypoxia around the world. J Environ Qual, 30: 275–281

    Article  Google Scholar 

  • Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929

    Article  Google Scholar 

  • Dittmar T. 2015. Reasons behind the long-term stability of dissolved organic matter. In: Biogeochemistry of Marine Dissolved Organic Matter. Elsevier. 369–388

  • Dittmar T, Koch B, Hertkorn N, Kattner G. 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods, 6: 230–235

    Article  Google Scholar 

  • Doglioni C, Pignatti J, Coleman M. 2016. Why did life develop on the surface of the Earth in the Cambrian? Geosci Front, 7: 865–873

    Article  Google Scholar 

  • Druffel E R M, Williams P M, Bauer J E, Ertel J R. 1992. Cycling of dissolved and particulate organic matter in the open ocean. J Geophys Res, 97: 15639–15659

    Article  Google Scholar 

  • Froelich P N, Klinkhammer G P, Bender M L, Luedtke N A, Heath G R, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim Cosmochim Acta, 43: 1075–1090

    Article  Google Scholar 

  • Glenn C R, Arthur M A. 1985. Sedimentary and geochemical indicators of productivity and oxygen contents in modern and ancient basins: The Holocene Black Sea as the “type” anoxic basin. Chem Geol, 48: 325–354

    Article  Google Scholar 

  • Goecke F, Thiel V, Wiese J, Labes A, Imhoff J F. 2013. Algae as an important environment for bacteria-phylogenetic relationships among new bacterial species isolated from algae. Phycologia, 52: 14–24

    Article  Google Scholar 

  • Gomez-Saez G V, Dittmar T, Holtappels M, Pohlabeln A M, Lichtschlag A, Schnetger B, Boetius A, Niggemann J. 2021. Sulfurization of dissolved organic matter in the anoxic water column of the Black Sea. Sci Adv, 7: eabf6199

    Article  Google Scholar 

  • Gray J S, Wu R S, Or Y Y. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser, 238: 249–279

    Article  Google Scholar 

  • Guo W, Yang L, Zhai W, Chen W, Osburn C L, Huang X, Li Y. 2014. Runoff-mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary—The Changjiang Estuary. J Geophys Res-Biogeosci, 119: 776–793

    Article  Google Scholar 

  • Hansell D, Carlson C, Repeta D, Schlitzer R. 2009. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography, 22: 202–211

    Article  Google Scholar 

  • Hansell D A, Carlson C A, Schlitzer R. 2012. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob Bio-geochem Cycle, 26: 1016

    Google Scholar 

  • Hasegawa T. 1997. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeogr Palaeo-climatol Palaeoecol, 130: 251–273

    Article  Google Scholar 

  • He C, Pan Q, Li P, **e W, He D, Zhang C, Shi Q. 2019. Molecular composition and spatial distribution of dissolved organic matter (DOM) in the Pearl River Estuary, China. Environ Chem, 17: 240–251

    Article  Google Scholar 

  • He C, Zhang Y, Li Y, Zhuo X, Li Y, Zhang C, Shi Q. 2020. In-house standard method for molecular characterization of dissolved organic matter by FT-ICR mass spectrometry. ACS Omega, 5: 11730–11736

    Article  Google Scholar 

  • Helly J J, Levin L A. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res Part I-Oceano-graphic Res Papers, 51: 1159–1168

    Article  Google Scholar 

  • Huang L, Guo H, Liu Z, Chen C, Wang K, Huang X, Chen W, Zhu Y, Yan M, Zhang D. 2022. Contrasting patterns of bacterial communities in the rearing water and gut of Penaeus vannamei in response to exogenous glucose addition. Mar Life Sci Technol, 4: 222–236

    Article  Google Scholar 

  • Jenkyns H C. 2010. Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst, 11: Q03004

    Article  Google Scholar 

  • Jensen M M, Kuypers M M M, Gaute L, Thamdrup B. 2008. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr, 53: 23–36

    Article  Google Scholar 

  • Jessen G L, Lichtschlag A, Ramette A, Pantoja S, Rossel P E, Schubert C J, Struck U, Boetius A. 2017. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci Adv, 3: e1601897

    Article  Google Scholar 

  • Jiao N, Cai R, Zheng Q, Tang K, Liu J, Jiao F, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. 2018. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev, 5: 459–463

    Article  Google Scholar 

  • Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599

    Article  Google Scholar 

  • Kaiser K, Benner R. 2012. Organic matter transformations in the upper mesopelagic zone of the North Pacific: Chemical composition and linkages to microbial community structure. J Geophys Res, 117: C01023

    Google Scholar 

  • Kalvelage T, Jensen M M, Contreras S, Revsbech N P, Lam P, Günter M, Laroche J Lavik G Kuypers M M M. 2011. Oxygen sensitivity of anammox and coupled N-cycle processes in Oxygen minimum zones. PLoS ONE, 6: e29299

    Article  Google Scholar 

  • Kamykowski D, Zentara S J. 1990. Hypoxia in the world ocean as recorded in the historical data set. Deep Sea Res Part A Oceanographic Res Papers, 37: 1861–1874

    Article  Google Scholar 

  • Kellerman A M, Dittmar T, Kothawala D N, Tranvik L J. 2014. Chemo-diversity of dissolved organic matter in lakes driven by climate and hydrology. Nat Commun, 5: 3804

    Article  Google Scholar 

  • Kester D R, Duedall I W, Connors D N, Pytkowicz R M. 1967. Preparation of artificial seawater1. Limnol Oceanogr, 12: 176–179

    Article  Google Scholar 

  • Koch B P, Dittmar T. 2006. From mass to structure: An aromaticity index for high-resolution mass data ofnatural organic matter. Rapid Commun Mass Spectrom, 20: 926–932

    Article  Google Scholar 

  • Lau M P, del Giorgio P. 2020. Reactivity, fate and functional roles of dissolved organic matter in anoxic inland waters. Biol Lett, 16: 20190694

    Article  Google Scholar 

  • Lechtenfeld O J, Hertkorn N, Shen Y, Witt M, Benner R. 2015. Marine sequestration of carbon in bacterial metabolites. Nat Commun, 6: 6711

    Article  Google Scholar 

  • Lee C. 1992. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim Cosmochim Acta, 56: 3323–3335

    Article  Google Scholar 

  • Lian J, Zheng X, Zhuo X, Chen Y L, He C, Zheng Q, Lin T H, Sun J, Guo W, Shi Q, Jiao N, Cai R. 2021. Microbial transformation of distinct exogenous substrates into analogous composition of recalcitrant dissolved organic matter. Environ Microbiol, 23: 2389–2403

    Article  Google Scholar 

  • Lønborg C, Carreira C, Jickells T, Alvarez-Salgado X A. 2020. Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Front Mar Sci, 7: 466

    Article  Google Scholar 

  • Marie D, Partensky F, Jacquet S, Vaulot D. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol, 63: 186–193

    Article  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H. 1993. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol, 159: 168–173

    Article  Google Scholar 

  • Maßmig M, Engel A. 2021. Dissolved organic matter in the upwelling system off Peru: Imprints of bacterial activity and water mass characteristics. J Geophys Res Biogeosci, 126: e2020JG006048

    Article  Google Scholar 

  • Maßmig M, Lüdke J, Krahmann G, Engel A. 2020. Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone. Biogeosciences, 17: 215–230

    Article  Google Scholar 

  • Matcher G, Lemley D A, Adams J B. 2021. Bacterial community dynamics during a harmful algal bloom of Heterosigma akashiwo. Aquat Microb Ecol, 86: 153–167

    Article  Google Scholar 

  • Mcilroy S J, Nielsen P H. 2014. The family saprospiraceae. In: The Pro-karyotes: Other Major Lineages of Bacteria and the Archaea. Springer. 863–889

  • Middelburg J J, Vlug T, Jaco F, van der Nat W A. 1993. Organic matter mineralization in marine systems. Glob Planet Change, 8: 47–58

    Article  Google Scholar 

  • Naafs B D A, Castro J M, de Gea G A, Quijano M L, Schmidt D N, Pancost R D. 2016. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat Geosci, 9: 135–139

    Article  Google Scholar 

  • O’Brien C L, Robinson S A, Pancost R D, Sinninghe Damsté J S, Schouten S, Lunt D J, Alsenz H, Bornemann A, Bottini C, Brassell S C, Farnsworth A, Forster A, Huber B T, Inglis G N, Jenkyns H C, Linnert C, Littler K, Markwick P, McAnena A, Mutterlose J, Naafs B D A, Püttmann W, Sluijs A, van Helmond N A G M, Vellekoop J, Wagner T, Wrobel N E. 2017. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Sci Rev, 172: 224–247

    Article  Google Scholar 

  • Oh S, Choi D. 2019. Microbial community enhances biodegradation of bisphenol a through selection of Sphingomonadaceae. Microb Ecol, 77: 631–639

    Article  Google Scholar 

  • Okabe S, Nielsen P H, Jones W L, Characklis W G. 1995. Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res, 29: 571–578

    Article  Google Scholar 

  • Osterholz H, Kilgour DPA, Storey D S, Lavik G, Ferdelman T G, Nig-gemann J, Dittmar T. 2021. Accumulation of DOC in the South Pacific subtropical gyre from a molecular perspective. Mar Chem, 231: 103955

    Article  Google Scholar 

  • Owens J D, Lyons T W, Lowery CM. 2018. Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth Planet Sci Lett, 499: 83–94

    Article  Google Scholar 

  • Pantoja S, Rossel P, Castro R, Cuevas L A, Daneri G, Cördova C. 2009. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters. Deep Sea Res Part II-Topic Stud Oceanogra, 56: 1055–1062

    Article  Google Scholar 

  • Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3: 486–490

    Article  Google Scholar 

  • Pucher M, Wünsch U, Weigelhofer G, Murphy K, Hein T, Graeber D. 2019. staRdom: Versatile software for analyzing spectroscopic data of dissolved organic matter in R. Water, 11: 2366

    Article  Google Scholar 

  • Rabalais N N, Diaz R J, Levin L A, Turner R E, Gilbert D, Zhang J. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7: 585–619

    Article  Google Scholar 

  • Rojo F. 2021. A new global regulator that facilitates the co-metabolization of polyaromatic hydrocarbons and other nutrients in Novosphingobium. Environ Microbiol, 23: 2875–2877

    Article  Google Scholar 

  • Schlanger S O, Jenkyns H C. 1976. Cretaceous oceanic anoxic events: Causes and consequences. Geol Mijnb, 55: 179–184

    Google Scholar 

  • Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature, 542: 335–339

    Article  Google Scholar 

  • Schubert C J, Coolen M J L, Neretin L N, Schippers A, Abbas B, DurischKaiser E, Wehrli B, Hopmans E C, Damste J S S, Wakeham S, Kuypers M M M. 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol, 8: 1844–1856

    Article  Google Scholar 

  • Seidel M, Manecki M, Herlemann D P R, Deutsch B, Schulz-Bull D, Jürgens K, Dittmar T. 2017. Composition and transformation of dissolved organic matter in the Baltic Sea. Front Earth Sci, 5: 31

    Article  Google Scholar 

  • Stedmon C A, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spec-troscopy. Mar Chem, 82: 239–254

    Article  Google Scholar 

  • Stolz A. 2009. Molecular characteristics of xenobiotic-degrading sphin-gomonads. Appl Microbiol Biotechnol, 81: 793–811

    Article  Google Scholar 

  • Stramma L, Schmidtko S, Levin L A, Johnson G C. 2010. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res Part I-Oceanogr Res Papers, 57: 587–595

    Article  Google Scholar 

  • Teeling H, Fuchs B M, Becher D, Klockow C, Gardebrecht A, Bennke C M, Kassabgy M, Huang S, Mann A J, Waldmann J, Weber M, Klind-worth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann F D, Callies U, Gerdts G, Wichels A, Wiltshire K H, Glöckner F O, Schweder T, Amann R. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phy-toplankton bloom. Science, 336: 608–611

    Article  Google Scholar 

  • van Dongen B E, Schouten S, Sinninghe Damsté J S. 2006. Preservation of carbohydrates through sulfurization in a Jurassic euxinic shelf sea: Examination of the Blackstone Band TOC cycle in the Kimmeridge Clay Formation, UK. Org GeoChem, 37: 1052–1073

    Article  Google Scholar 

  • Van Mooy B A S, Keil R G, Devol A H. 2002. Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochim Cos-mochim Acta, 66: 457–465

    Article  Google Scholar 

  • Vaquer-Sunyer R, Duarte C M. 2008. Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA, 105: 15452–15457

    Article  Google Scholar 

  • Vorobev A, Sharma S, Yu M, Lee J, Washington B J, Whitman W B, Ballantyne Iv F, Medeiros P M, Moran M A. 2018. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol, 20: 3012–3030

    Article  Google Scholar 

  • Wang Y, Liu Y, Wang J, Luo T, Zhang R, Sun J, Zheng Q, Jiao N. 2019. Seasonal dynamics of bacterial communities in the surface seawater around subtropical **amen Island, China, as determined by 16S rRNA gene profiling. Mar Pollut Bull, 142: 135–144

    Article  Google Scholar 

  • Wang Y, Zhang R, He Z, Van Nostrand J D, Zheng Q, Zhou J, Jiao N. 2017. Functional gene diversity and metabolic potential of the microbial community in an estuary-shelf environment. Front Microbiol, 8: 1153

    Article  Google Scholar 

  • Westrich J T, Berner R A. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested1. Limnol Oceanogr, 29: 236–249

    Article  Google Scholar 

  • Wright J J, Konwar K M, Hallam S J. 2012. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol, 10: 381–394

    Article  Google Scholar 

  • **e R, Wang Y, Chen Q, Guo W, Jiao N, Zheng Q. 2020. Coupling between carbon and nitrogen metabolic processes mediated by coastal microbes in Synechococcus-derived organic matter addition incubations. Front Microbiol, 11: 1041

    Article  Google Scholar 

  • **e S. 2018. The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans. Sci China Earth Sci, 61: 1379–1383

    Article  Google Scholar 

  • Xu J, Chen Q, Lønborg C, Li Y, Cai R, He C, Shi Q, Hu Y, Wang Y, Jiao N. 2022. You exude what you eat: How carbon-, nitrogen-, and sulfur-rich organic substrates shape microbial community composition and the dissolved organic matter pool. Appl Environ Microbiol, 88: e01558–01522

    Article  Google Scholar 

  • Yamashita Y, Tanoue E. 2003. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem, 82: 255–271

    Article  Google Scholar 

  • Yin H, **e S, Qing J, Yan J, Luo G. 2008. Discussion on geobiology, biogeology and geobiofacies. Sci China Ser D-Earth Sci, 51: 1516–1524

    Article  Google Scholar 

  • Zecher K, Hayes K R, Philipp B. 2020. Evidence of interdomain ammonium cross-feeding from methylamine- and glycine betaine-degrading rhodobacteraceae to diatoms as a widespread interaction in the marine phycosphere. Front Microbiol, 11: 533894

    Article  Google Scholar 

  • Zehnder A, Svensson B. 1986. Life without oxygen: What can and what cannot? Experientia, 42: 1197–1205

    Article  Google Scholar 

  • Zhang C. 2017. Untangling the role that microbes play in ocean carbon cycleA new paradigm in marine biogeochemistry. Sci China Earth Sci, 60: 409–412

    Article  Google Scholar 

  • Zhang C, Dang H, Azam F, Benner R, Legendre L, Passow U, Polimene L, Robinson C, Suttle C A, Jiao N. 2018. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev, 5: 481–499

    Article  Google Scholar 

  • Zhang J, Gilbert D, Gooday A J, Levin L, Naqvi S W A, Middelburg J J, Scranton M, Ekau W, Peña A, Dewitte B, Oguz T, Monteiro PMS, Urban E, Rabalais N N, Ittekkot V, Kemp W M, Ulloa O, Elmgren R, Escobar-Briones E, Van der Plas A K. 2010. Natural and human-induced hypoxia and consequences for coastal areas: Synthesis and future development. Biogeosciences, 7: 1443–1467

    Article  Google Scholar 

  • Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, Chen F. 2019. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: Coupling of bacterial diversity and DOM chemodiversity. ISME J, 13: 2551–2565

    Article  Google Scholar 

  • Zheng Q, Chen Q, Cai R, He C, Guo W, Wang Y, Shi Q, Chen C, Jiao N. 2019. Molecular characteristics of microbially mediated transformations of Synechococcus-derived dissolved organic matter as revealed by incubation experiments. Environ Microbiol, 21: 2533–2543

    Article  Google Scholar 

  • Zhou Y, Davidson T A, Yao X, Zhang Y, Jeppesen E, de Souza J G, Wu H, Shi K, Qin B. 2018. How autochthonous dissolved organic matter responds to eutrophication and climate warming: Evidence from a cross-continental data analysis and experiments. Earth-Sci Rev, 185: 928–937

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2021QZKK0102), the National Natural Science Foundation of China (Grant Nos. 42222604, 42188102, 92251306, 42141003, 41861144018 and 42106040), and the President’s Fund of **amen University (Grant Nos. 20720170107 and 20720210076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nianzhi Jiao or Qiang Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, S., Chen, J., Shen, Y. et al. Molecular characterization of organic matter transformation mediated by microorganisms under anoxic/hypoxic conditions. Sci. China Earth Sci. 66, 894–909 (2023). https://doi.org/10.1007/s11430-022-1080-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1080-8

Keywords

Navigation