Log in

Tracing the formation and differentiation of the Earth by non-traditional stable isotopes

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere, biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crust-mantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albarède F, Télouk P, Balter V. 2017. Medical applications of isotope metallomics. Rev Mineral Geochem, 82: 851–885

    Article  Google Scholar 

  • Armytage R M G, Georg R B, Williams H M, Halliday A N. 2012. Silicon isotopes in lunar rocks: Implications for the Moon’s formation and the early history of the Earth. Geochim Cosmochim Acta, 77: 504–514

    Article  Google Scholar 

  • Anbar A D, Duan Y, Lyons T W, Arnold G L, Kendall B, Creaser R A, Kaufman A J, Gordon G W, Scott C, Garvin J, Buick R. 2007. A whiff of oxygen before the great oxidation event? Science, 317: 1903–1906

    Article  Google Scholar 

  • Andersen M B, Elliott T, Freymuth H, Sims K W W, Niu Y, Kelley K A. 2015. The terrestrial uranium isotope cycle. Nature, 517: 356–359

    Article  Google Scholar 

  • André L, Abraham K, Hofmann A, Monin L, Kleinhanns I C, Foley S. 2019. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat Geosci, 12: 769–773

    Article  Google Scholar 

  • Barnes J D, Sharp Z D. 2017. Chlorine isotope geochemistry. Rev Mineral Geochem, 82: 345–378

    Article  Google Scholar 

  • Barnes J D, Sharp Z D, Fischer T P. 2008. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology, 36: 883–886

    Article  Google Scholar 

  • Bigeleisen J, Mayer M G. 1947. Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys, 15: 261–267

    Article  Google Scholar 

  • Blanchard M, Balan E, Schauble E A. 2017. Equilibrium fractionation of non-traditional isotopes: A molecular modeling perspective. Rev Mineral Geochem, 82: 27–63

    Article  Google Scholar 

  • Blum J D, Johnson M W. 2017. Recent developments in mercury stable isotope analysis. Rev Mineral Geochem, 82: 733–757

    Article  Google Scholar 

  • Boyce J W, Treiman A H, Guan Y, Ma C, Eiler J M, Gross J, Greenwood J P, Stolper E M. 2015. The chlorine isotope fingerprint of the lunar magma ocean. Sci Adv, 1: e1500380

    Article  Google Scholar 

  • Burgess S D, Bowring S, Shen S. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321

    Article  Google Scholar 

  • Cameron V, Vance D, Archer C, House C H. 2009. A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci USA, 106: 10944–10948

    Article  Google Scholar 

  • Canup R M. 2012. Forming a Moon with an Earth-like Composition via a Giant Impact. Science, 338: 1052–1055

    Article  Google Scholar 

  • Cheng Z, Zhang Z, **e Q, Hou T, Ke S. 2018. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett, 489: 100–110

    Article  Google Scholar 

  • Chi Fru E, Rodríguez N P, Partin C A, Lalonde S V, Andersson P, Weiss D J, El Albani A, Rodushkin I, Konhauser K O. 2016. Cu isotopes in marine black shales record the Great Oxidation Event. Proc Natl Acad Sci USA, 113: 4941–4946

    Article  Google Scholar 

  • Chen Y X, Schertl H P, Zheng Y F, Huang F, Zhou K, Gong Y Z. 2016. Mg-O isotopes trace the origin of Mg-rich fluids in the deeply subducted continental crust of Western Alps. Earth Planet Sci Lett, 456: 157–167

    Article  Google Scholar 

  • Conway T M, John S G. 2014. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob Biogeochem Cycle, 28: 1111–1128

    Article  Google Scholar 

  • Crowe S A, Døssing L N, Beukes N J, Bau M, Kruger S J, Frei R, Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature, 501: 535–538

    Article  Google Scholar 

  • Ćuk M, Stewart S T. 2012. Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 338: 1047–1052

    Article  Google Scholar 

  • Dauphas N, Craddock P R, Asimow P D, Bennett V C, Nutman A P, Ohnenstetter D. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett, 288: 255–267

    Article  Google Scholar 

  • Dauphas N, Roskosz M, Alp E E, Neuville D R, Hu M Y, Sio C K, Tissot F L H, Zhao J, Tissandier L, Médard E, Cordier C. 2014. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett, 398: 127–140

    Article  Google Scholar 

  • Davis A M, Richter F M. 2004. Condensation and evaporation of solar system materials. In: Holland H D, Turekian K K, Davis A M, eds. Treatise on Geochemistry (Vol 1): Meteorites, Comets, and Planets. Oxford: Elsevier-Pergamon. 407–430

    Google Scholar 

  • Deng Z, Chaussidon M, Guitreau M, Puchtel I S, Dauphas N, Moynier F. 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nat Geosci, 12: 774–778

    Article  Google Scholar 

  • Eickmann B, Hofmann A, Wille M, Bui T H, Wing B A, Schoenberg R. 2018. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat Geosci, 11: 133–138

    Article  Google Scholar 

  • Frei R, Gaucher C, Poulton S W, Canfield D E. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250–253

    Article  Google Scholar 

  • Griffin W L, O’Reilly S Y. 2007. Cratonic lithospheric mantle: Is anything subducted? Episodes, 30: 43–53

    Article  Google Scholar 

  • Gussone N, Schmitt A D, Heuser A, Wombacher F, Dietzel M, Tipper E, Schiller M. 2016. Calcium Stable Isotope Geochemistry. Heidelberg: Springer, Berlin. 260

    Book  Google Scholar 

  • Halliday A N, Lee D C, Christensen J N, Walder A J, Freedman P A, Jones C E, Hall C M, Yi W, Teagle D. 1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int J Mass Spectrometry Ion Processes, 146–147: 21–33

    Article  Google Scholar 

  • Hazen R M, Jones A P, Baross J A. 2013. Carbon in Earth. Rev Mineral Geochem, 75: 1–698

    Article  Google Scholar 

  • He Y, Meng X, Ke S, Wu H, Zhu C, Teng F Z, Hoefs J, Huang J, Yang W, Xu L, Hou Z, Ren Z Y, Li S. 2019. A nephelinitic component with unusual δ 56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth Planet Sci Lett, 512: 175–183

    Article  Google Scholar 

  • Hoefs J. 2018. Stable Isotope Geochemistry. Berlin: Springer-Verlag. 435

    Book  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Article  Google Scholar 

  • Hu Y, Teng F Z, Plank T. 2018. Potassium isotopic inputs to subduction zones. 28th Annual V. M. Goldschmidt Conference

    Google Scholar 

  • Hu Y, Teng F Z, Plank T, Huang K J. 2017. Magnesium isotopic composition of subducting marine sediments. Chem Geol, 466: 15–31

    Article  Google Scholar 

  • Huang F, Tian S Y. 2018. Several metal stable isotope systems: Analytical methods, principles of tracing and important applications (in Chinese). Bull Mineral Petrol Geochem, 37: 793–811

    Google Scholar 

  • Huang J, Li S G, **ao Y, Ke S, Li W Y, Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta, 164: 298–317

    Article  Google Scholar 

  • Huang K J, Teng F Z, Shen B, **ao S, Lang X, Ma H R, Fu Y, Peng Y. 2016. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proc Natl Acad Sci USA, 113: 14904–14909

    Article  Google Scholar 

  • Huang K J, Teng F Z, Plank T, Staudigel H, Hu Y, Bao Z Y. 2018. Magnesium isotopic composition of altered oceanic crust and the global Mg cycle. Geochim Cosmochim Acta, 238: 357–373

    Article  Google Scholar 

  • Huang S, Farkaš J, Jacobsen S B. 2011. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 75: 4987–4997

    Article  Google Scholar 

  • Huh Y, Chan L H, Edmond J M. 2001. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett, 194: 189–199

    Article  Google Scholar 

  • Jacob D E. 2004. Nature and origin of eclogite xenoliths from kimberlites. Lithos, 77: 295–316

    Article  Google Scholar 

  • John S G, Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet Sci Lett, 394: 159–167

    Article  Google Scholar 

  • John S G, Kunzmann M, Townsend E J, Rosenberg A D. 2017. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeogr Palaeoclimatol Palaeoecol, 466: 202–208

    Article  Google Scholar 

  • Johnson C M, Beard B L, Albarede F. 2004. Geochemistry of Non-Traditional Stable Isotopes. Rev Mineral Geochem, 55: 1–454

    Article  Google Scholar 

  • Kasting J. 2005. Methane and climate during the Precambrian era. Precambrian Res, 137: 119–129

    Article  Google Scholar 

  • Kato C, Moynier F, Valdes M C, Dhaliwal J K, Day J M D. 2015. Extensive volatile loss during formation and differentiation of the Moon. Nat Commun, 6: 7617

    Article  Google Scholar 

  • Kato C, Moynier F. 2017. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation. Sci Adv, 3: e1700571

    Article  Google Scholar 

  • Ke S, Liu S A, Li W Y, Yang W, Teng F Z. 2011. Advances and application in magnesium isotope geochemistry (in Chinese). Acta Petrol Sin, 27: 383–397

    Google Scholar 

  • Kipp M A, Stüeken E E, Bekker A, Buick R. 2017. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proc Natl Acad Sci USA, 114: 875–880

    Article  Google Scholar 

  • Konhauser K O, Pecoits E, Lalonde S V, Papineau D, Nisbet E G, Barley M E, Arndt N T, Zahnle K, Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750–753

    Article  Google Scholar 

  • Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 41: 27–30

    Article  Google Scholar 

  • Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90

    Article  Google Scholar 

  • Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, **a Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl Sci Rev, 4: 111–120

    Google Scholar 

  • Li W Y, Teng F Z, Wing B A, **ao Y. 2014. Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochem Geophys Geosyst, 15: 408–415

    Article  Google Scholar 

  • Little S H, Sherman D M, Vance D, Hein J R. 2014. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth Planet Sci Lett, 396: 213–222

    Article  Google Scholar 

  • Liu S A, Li S G. 2019. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering, 5: 448–457

    Article  Google Scholar 

  • Liu S A, Wang Z Z, Li S G, Huang J, Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett, 444: 169–178

    Article  Google Scholar 

  • Liu S A, Wu H, Shen S, Jiang G, Zhang S, Lv Y, Zhang H, Li S. 2017. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology, 45: 343–346

    Article  Google Scholar 

  • Liu X M, Rudnick R L. 2011. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc Natl Acad Sci USA, 108: 20873–20880

    Article  Google Scholar 

  • Lock S J, Stewart S T, Petaev M I, Leinhardt Z, Mace M T, Jacobsen S B, Cuk M. 2018. The origin of the Moon within a terrestrial synestia. J Geophys Res Planets, 123: 910–951

    Article  Google Scholar 

  • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys J, 591: 1220–1247

    Article  Google Scholar 

  • Lv Y, Liu S A, Wu H, Hohl S V, Chen S, Li S. 2018. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications. Geochim Cosmochim Acta, 239: 330–345

    Article  Google Scholar 

  • Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506: 307–315

    Article  Google Scholar 

  • Magna T, Wiechert U, Halliday A N. 2006. New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett, 243: 336–353

    Article  Google Scholar 

  • MacPherson G J. 2008. Oxygen in the Solar System. Rev Mineral Geochem, 68: 1–598

    Article  Google Scholar 

  • Maréchal C N, Nicolas E, Douchet C, Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem Geophys Geosyst, 1: 1015

    Article  Google Scholar 

  • Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol, 156: 251–273

    Article  Google Scholar 

  • Mougel B, Moynier F, Göpel C. 2018. Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites. Earth Planet Sci Lett, 481: 1–8

    Article  Google Scholar 

  • Moynier F, Vance D, Fujii T, Savage P. 2017a. The isotope geochemistry of zinc and copper. Rev Mineral Geochem, 82: 543–600

    Article  Google Scholar 

  • Moynier F, Foriel J, Shaw A S, Le Borgne M. 2017b. Distribution of Zn isotopes during Alzheimer’s disease. Geochem Persp Let, 3: 142–150

    Article  Google Scholar 

  • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717

    Article  Google Scholar 

  • Nielsen S G, Wasylenki L E, Rehkämper M, Peacock C L, Xue Z, Moon E M. 2013. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta, 117: 252–265

    Article  Google Scholar 

  • Nier A O. 1940. A mass spectrometer for routine isotope abundance measurements. Rev Sci Instruments, 11: 212–216

    Article  Google Scholar 

  • Niu Y, Gong H, Wang X, **ao Y, Guo P, Shao F, Sun P, Shen S, Duan M, Kong J, Wang G, Xue Q, Gao Y, Hong D. 2017. Some key problems on the petrogenesis of seafloor basalts, abyssal peridotites and geodynamics? A non-traditional isotope approach (in Chinese). Adv Earth Sci, 32: 111–127

    Google Scholar 

  • Ostrander C M, Nielsen S G, Owens J D, Kendall B, Gordon G W, Romaniello S J, Anbar A D. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci, 12: 186–191

    Article  Google Scholar 

  • Paniello R C, Day J M D, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490: 376–379

    Article  Google Scholar 

  • Pearson D G, Canil D, Shirey S B. 2014. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In: Holland H D, Turekian K K, Davis A M, eds. Treatise on Geochemistry (Vol 3): The Mantle and Core. Oxford: Elsevier. 169–253

    Chapter  Google Scholar 

  • Penniston-Dorland S, Liu X M, Rudnick R L. 2017. Lithium isotope geochemistry. Rev Mineral Geochem, 82: 165–217

    Article  Google Scholar 

  • Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7: 283–286

    Article  Google Scholar 

  • Pringle E A, Moynier F. 2017. Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion. Earth Planet Sci Lett, 473: 62–70

    Article  Google Scholar 

  • Qin L, Wang X. 2017. Chromium isotope geochemistry. Rev Mineral Geochem, 82: 379–414

    Article  Google Scholar 

  • Richter F M, Dauphas N, Teng F Z. 2009. Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion. Chem Geol, 258: 92–103

    Article  Google Scholar 

  • Samanta M, Ellwood M J, Sinoir M, Hassler C S. 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar Chem, 192: 1–12

    Article  Google Scholar 

  • Sedaghatpour F, Teng F Z, Liu Y, Sears D W G, Taylor L A. 2013. Magnesium isotopic composition of the Moon. Geochim Cosmochim Acta, 120: 1–16

    Article  Google Scholar 

  • Shahar A, Elardo S M, Macris C A. 2017. Equilibrium fractionation of nontraditional stable isotopes: An experimental perspective. Rev Mineral Geochem, 82: 65–83

    Article  Google Scholar 

  • Sharp Z D, Shearer C K, McKeegan K D, Barnes J D, Wang Y Q. 2010. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science, 329: 1050–1053

    Article  Google Scholar 

  • Sheldon N D. 2006. Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 231: 315–321

    Article  Google Scholar 

  • Sio C K I, Dauphas N, Teng F Z, Chaussidon M, Helz R T, Roskosz M. 2013. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim Cosmochim Acta, 123: 302–321

    Article  Google Scholar 

  • Sossi P A, Moynier F, van Zuilen K. 2018. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes. Proc Natl Acad Sci USA, 115: 10920–10925

    Article  Google Scholar 

  • Sossi P A, Moynier F. 2017. Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-Suite. Earth Planet Sci Lett, 471: 125–135

    Article  Google Scholar 

  • Stracke A, Bizimis M, Salters V J M. 2003. Recycling oceanic crust: Quantitative constraints. Geochemistry Geophysics Geosystems, 4: 8003

    Google Scholar 

  • Stüeken E E, Buick R, Anbar A D. 2015. Selenium isotopes support free O2 in the latest Archean. Geology, 43: 259–262

    Article  Google Scholar 

  • Su B X, Hu Y, Teng F Z, **ao Y, Zhou X H, Sun Y, Zhou M F, Chang S C. 2017. Magnesium isotope constraints on subduction contribution to Mesozoic and Cenozoic East Asian continental basalts. Chem Geol, 466: 116–122

    Article  Google Scholar 

  • Sun H, **ao Y, Gao Y, Zhang G, Casey J F, Shen Y. 2018. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc Natl Acad Sci USA, 115: 3782–3787

    Article  Google Scholar 

  • Sun W, Wei G J, Zhang Z F, Ding X, Ling M X. 2012. Research status and advance in isotope geochemistry (in Chinese). Bull Mineral Petrol Geochem, 31: 560–564

    Google Scholar 

  • Sun Y, Teng F Z, Hu Y, Chen X Y, Pang K N. 2019. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim Cosmochim Acta

    Google Scholar 

  • Sun Y, Teng F Z, Ying J F, Su B X, Hu Y, Fan Q C, Zhou X H. 2017. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. J Geophys Res Solid Earth, 122: 7562–7572

    Article  Google Scholar 

  • Taylor S R. 2014. The Moon re-examined. Geochim Cosmochim Acta, 141: 670–676

    Article  Google Scholar 

  • Teng F Z, Dauphas N, Helz R T, Gao S, Huang S. 2011. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett, 308: 317–324

    Article  Google Scholar 

  • Teng F Z, Hu Y, Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proc Natl Acad Sci USA, 113: 7082–7087

    Article  Google Scholar 

  • Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 74: 4150–4166

    Article  Google Scholar 

  • Teng F Z, Watkins J M, Dauphas N. 2017. Non-traditional stable isotopes. Rev Mineral Geochem, 82: 1–885

    Article  Google Scholar 

  • Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287

    Article  Google Scholar 

  • Tian H C, Yang W, Li S G, Ke S, Chu Z Y. 2016. Origin of low δ 26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93–105

    Article  Google Scholar 

  • Tian H C, Yang W, Li S G, Ke S, Duan X Z. 2018. Low δ 26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids. Geochim Cosmochim Acta, 240: 191–219

    Article  Google Scholar 

  • Tomascak P B, Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry. New York: Springer. 195

    Book  Google Scholar 

  • Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 450: 1206–1209

    Article  Google Scholar 

  • Urey H C. 1947. The thermodynamic properties of isotopic substances. J Chem Soc, 562

    Google Scholar 

  • Valley J W, Cole D R. 2001. Stable isotope geochemistry. Rev Mineral Geochem, 43: 1–663

    Article  Google Scholar 

  • Valley J W, Taylor H P, O’Neil J R. 1986. Stable isotopes in high-temperature geological processes. Rev Mineral, 16: 1–570

    Google Scholar 

  • Wang K, Jacobsen S B. 2016. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature, 538: 487–490

    Article  Google Scholar 

  • Wang S J, Teng F Z, Williams H M, Li S G. 2012. Magnesium isotopic variations in cratonic eclogites: Origins and implications. Earth Planet Sci Lett, 359–360: 219–226

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G. 2014a. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun, 5: 5328

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G, Hong J A. 2014b. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta, 143: 34–48

    Article  Google Scholar 

  • Wang S J, Teng F Z, Rudnick R L, Li S G. 2015a. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta, 165: 435–448

    Article  Google Scholar 

  • Wang S J, Teng F Z, Rudnick R L, Li S G. 2015b. Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology, 43: 1071–1074

    Article  Google Scholar 

  • Wang S J, Teng F Z, Scott J M. 2016. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta, 185: 78–87

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G, Zhang L F, Du J X, He Y S, Niu Y. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290–291: 94–103

    Article  Google Scholar 

  • Wang S J, Rudnick R L, Gaschnig R M, Wang H, Wasylenki L E. 2019. Methanogenesis sustained by sulfide weathering during the Great Oxidation Event. Nat Geosci, 12: 296–300

    Article  Google Scholar 

  • Wang X, Liu S A, Wang Z, Chen D, Zhang L. 2018a. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeogr Palaeoclimatol PalaeoEcol, 498: 68–82

    Article  Google Scholar 

  • Wang Z Z, Liu S A, Chen L H, Li S G, Zeng G. 2018b. Compositional transition in natural alkaline lavas through silica-undersaturated meltlithosphere interaction. Geology, 46: 771–774

    Article  Google Scholar 

  • Watkins J M, DePaolo D J, Watson E B. 2017. Kinetic fractionation of nontraditional stable isotopes by diffusion and crystal growth reactions. Rev Mineral Geochem, 82: 85–125

    Article  Google Scholar 

  • Weyer S, Ionov D A. 2007. Partial melting and melt percolation in the mantle: The message from Fe isotopes. Earth Planet Sci Lett, 259: 119–133

    Article  Google Scholar 

  • Wu H, He Y, Teng F Z, Ke S, Hou Z, Li S. 2018. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary. Geochim Cosmochim Acta, 222: 671–684

    Article  Google Scholar 

  • Yan B, Zhu X, He X, Tang S. 2019. Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Res, 320: 472–483

    Article  Google Scholar 

  • Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194

    Article  Google Scholar 

  • Zahnle K, Claire M, Catling D. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4: 271–283

    Article  Google Scholar 

  • Zhang H F, Tang Y J, Zhao X M, Yang Y H. 2007. Significance and prospective of non-traditional isotopic systems in mantle geochemistry (in Chinese). Earth-Sci Front, 14: 37–57

    Article  Google Scholar 

  • Zhang J, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat Geosci, 5: 251–255

    Article  Google Scholar 

  • Zhao Y, Vance D, Abouchami W, de Baar H J W. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim Cosmochim Acta, 125: 653–672

    Article  Google Scholar 

  • Zhu X K, Guo Y, Williams R J P, O’Nions R K, Matthews A, Belshaw N S, Canters G W, de Waal E C, Weser U, Burgess B K, Salvato B. 2002. Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett, 200: 47–62

    Article  Google Scholar 

  • Zhu X K, Wang Y, Yan B, Li J, Dong A, Li Z H, Sun J. 2013. Developments of Non-Traditional Stable Isotope Geochemistry (in Chinese). Bull Mineral Petrol Geochem, 32: 651–688

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Yongfei Zheng for the invitation to write this manuscript. Fruitful discussion with Prof. James Farquhar and comments from Drs. **nyang Chen, Yongsheng He, Yan Hu and Hengci Tian have significantly improved the manuscript. Three anonymous reviewers are acknowledged for their insightful reviews. This study was financially supported by the National Natural Science Foundation of China (Grant No. 41729001), the National Science Foundation (Grant No. EAR-1747706), the European Research Council under the H2020 framework program/ERC grant agreement (Grant No. #637503-Pristine), the UnivEarthS Labex program at Sorbonne Paris Cité (Grant Nos. #ANR-10-LABX-0023 and #ANR-11-IDEX-0005-02), and the ANR through a chaire d’excellence Sorbonne Paris Cité.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangzhen Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, F., Wang, S. & Moynier, F. Tracing the formation and differentiation of the Earth by non-traditional stable isotopes. Sci. China Earth Sci. 62, 1702–1715 (2019). https://doi.org/10.1007/s11430-019-9520-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9520-6

Keywords

Navigation