Log in

Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed. This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration (I-D) thresholds. First, the study on landslide susceptibility in China is introduced. The entire territory has been classified into five categories, among which high-susceptibility regions (Zone 4- ‘High’ and 5-‘Very high’) account for 4.15% of the total extension of China. Second, rainfall is considered as an external triggering factor that may induce landslide initiation. Real-time satellite-based TMPA 3B42 products may provide real rainfall spatial and temporal patterns, which may be used to derive rainfall duration time and intensity. By using a historical record of 60 significant past landslides, the rainfall I-D equation has been calibrated. The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds, where the susceptibility category is ‘high’ or ‘very high’. This study shows a useful tool to be part of a systematic landslide simulation methodology, potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baum R L, Coe J A, Godt J W, Harp E L, Reid M E, Savage W Z, Schulz W H, Brien D L, Chleborad A F, McKenna J P, Michael J A. 2005. Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides, 2: 266–279

    Article  Google Scholar 

  • Caine N. 1980. The rainfall intensity: Duration control of shallow landslides and debris flows. Geogr Ann Ser A-Phys Geogr, 62: 23–27

    Article  Google Scholar 

  • Chen C Y, Chen T C, Yu F C, Yu W H, Chun-Chieh T. 2005. Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol, 47: 715–724

    Article  Google Scholar 

  • Chen S, Hong Y, Cao Q, Kirstetter P E, Gourley J J, Qi Y, Zhang J, Howard K, Hu J, Wang J. 2013. Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? J Hydrol, 506: 4–13

    Article  Google Scholar 

  • Cheng G D, Li X. 2015. Integrated research methods in watershed science. Sci China Earth Sci, 58: 1159–1168

    Article  Google Scholar 

  • Chung C J F, Fabbri A G. 1999. Probabilistic prediction models for landslide hazard map**. Photogramm Eng Rem S, 65: 1389–1399

    Google Scholar 

  • Coe J A, Michael J A, Crovelli R A, Savage W, Laprade W, Nashem W. 2004. Probabilistic assessment of Precipitation-Triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosci, 10: 103–122

    Article  Google Scholar 

  • Ding J, Yang Z, Shang Y, Zhou S, Yin J. 2006. A new method for spatiotemporal prediction of rainfall-induced landslide. Sci China Ser D-Earth Sci, 49: 421–430

    Article  Google Scholar 

  • Floris M, Bozzano F. 2008. Evaluation of landslide reactivation: A modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology, 94: 40–57

    Article  Google Scholar 

  • Gomes R, Guimarães R, de Carvalho O, Fernandes N, do Amaral E. 2013. Combining spatial models for shallow landslides and debris-flows prediction. Remote Sens, 5: 2219–2237

    Article  Google Scholar 

  • Greco R, Giorgio M, Capparelli G, Versace P. 2013. Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol, 153: 68–79

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31: 181–216

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark C P. 2008. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5: 3–17

    Article  Google Scholar 

  • Heersink P. 2005. World Atlas of natural hazards. Cartogr-Int J Geographic Inf Geovisual, 40: 133–134

    Google Scholar 

  • Hong Y, Hiura H, Shino K, Sassa K, Suemine A, Fukuoka H, Wang G. 2005. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides, 2: 97–105

    Article  Google Scholar 

  • Hong Y, Adler R, Huffman G. 2007. Use of satellite remote sensing data in the map** of global landslide susceptibility. Nat Hazards, 43: 245–256

    Article  Google Scholar 

  • Hong Y, Adler R F. 2008. Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and realtime satellite rainfall estimates. Int J Sediment Res, 23: 249–257

    Article  Google Scholar 

  • Huang R. 2007. Large-scale landslides and their sliding mechanisms in China Since the 20th century (in Chinese). Chin J Rock Mech Eng, 26: 433–454

    Google Scholar 

  • Huang D, Zhang T, Zhou F. 2010. Sea-surface temperature fronts in the Yellow and East China Seas from TRMM microwave imager data. Deep-Sea Res Part II-Top Stud Oceanogr, 57: 1017–1024

    Article  Google Scholar 

  • Huang Y, Chen S, Cao Q, Hong Y, Wu B, Huang M, Qiao L, Zhang Z, Li Z, Li W, Yang X. 2014. Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Bei**g extreme heavy rainfall event of 21 July 2012. Water, 6: 32–44

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides, 11: 167–194

    Article  Google Scholar 

  • Iverson R M. 2000. Landslide triggering by rain infiltration. Water Resour Res, 36: 1897–1910

    Article  Google Scholar 

  • Jia S, Zhu W, Lű A, Yan T. 2011. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens Environ, 115: 3069–3079

    Article  Google Scholar 

  • Jaiswal P, van Westen C J, Jetten V. 2011. Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, 8: 279–291

    Article  Google Scholar 

  • Joyce R J, Janowiak J E, Arkin P A, **e P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol, 5: 487–503

    Article  Google Scholar 

  • Keefer D K, Wilson R C, Mark R K, Brabb E E, Brown W M, Ellen S D, Harp E L, Wieczorek G F, Alger C S, Zatkin R S. 1987. Real-time landslide warning during heavy rainfall. Science, 238: 921–925

    Article  Google Scholar 

  • Kirschbaum D B, Adler R, Hong Y, Hill S, Lerner-Lam A. 2010. A global landslide catalog for hazard applications: Method, results, and limitations. Nat Hazards, 52: 561–575

    Article  Google Scholar 

  • Kirschbaum D, Adler R, Adler D, Peters-Lidard C, Huffman G. 2012. Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J Hydrometeorol, 13: 1536–1551

    Article  Google Scholar 

  • Kirschbaum D, Stanley T, Zhou Y. 2015. Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249: 4–15

    Article  Google Scholar 

  • Larsen M C, Simon A. 1993. A rainfall Intensity-Duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann Ser A-Phys Geogr, 75: 13–23

    Article  Google Scholar 

  • Li W, Liu C, Hong Y, Saharia M, Sun W, Yao D, Chen W. 2016a. Rainstorminduced shallow landslides process and evaluation—A case study from three hot spots, China. Geomatics Nat Hazards Risk, 7: 1908–1918

    Article  Google Scholar 

  • Li W, Liu C, Hong Y, Zhang X, Wan Z, Saharia M, Sun W, Yao D, Chen W, Chen S, Yang X, Yue Y. 2016b. A public Cloud-based China’s Landslide Inventory Database (CsLID): Development, zone, and spatiotemporal analysis for significant historical events, 1949–2011. J Mt Sci, 13: 1275–1285

    Article  Google Scholar 

  • Li Y, Meng H, Dong Y, Hu S. 2004. Main types and characteristics of geo-hazard in China—Based on the results of geo-hazard survey in 290 counties (in Chinese). Chin J Geol Hazard Control, 15: 29–31

    Google Scholar 

  • Liao M S, Tang J, Wang T, Balz T, Zhang L. 2012. Landslide monitoring with high-resolution SAR data in the Three Gorges region. Sci China Earth Sci, 55: 590–601

    Article  Google Scholar 

  • Liao Z, Hong Y, Wang J, Fukuoka H, Sassa K, Karnawati D, Fathani F. 2010. Prototy** an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides, 7: 317–324

    Article  Google Scholar 

  • Liu C, Li W, Lu P, Sang K, Hong Y, Li Y. 2012. Susceptibility evaluation and map** of China's landslide disaster based on multi-temporal ground and remote sensing satellite data. ISPRS-International Archives of the Photogrammetry XXXIX-B8. 45–50

    Google Scholar 

  • Liu C, Li W, Wu H, Lu P, Sang K, Sun W, Chen W, Hong Y, Li R. 2013. Susceptibility evaluation and map** of China’s landslides based on multi-source data. Nat Hazards, 69: 1477–1495

    Article  Google Scholar 

  • Liu C, Shige S, Takayabu Y N, Zipser E. 2015. Latent heating contribution from precipitation systems with different sizes, depths, and intensities in the tropics. J Clim, 28: 186–203

    Article  Google Scholar 

  • Ma T, Li C, Sun L, Li W, He C. 2011. Rainfall intensity-duration thresholds for landslides in Zhejiang region, China (in Chinese). Chin J Geol Hazard Control, 22: 20–25

    Google Scholar 

  • Mathew J, Jha V K, Rawat G S. 2009. Landslide susceptibility zonation map** and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6: 17–26

    Article  Google Scholar 

  • Miller S, Brewer T, Harris N. 2009. Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: Application to landslide management in St Thomas, Jamaica. Bull Eng Geol Environ, 68: 539–550

    Article  Google Scholar 

  • Montrasio L, Valentino R. 2008. A model for triggering mechanisms of shallow landslides. Nat Hazards Earth Syst Sci, 8: 1149–1159

    Article  Google Scholar 

  • Olson W S, Kummerow C D, Heymsfield G M, Giglio L. 1996. A method for combined Passive-Active microwave retrievals of cloud and precipitation profiles. J Appl Meteorol, 35: 1763–1789

    Article  Google Scholar 

  • Petley D. 2012. Global patterns of loss of life from landslides. Geology, 40: 927–930

    Article  Google Scholar 

  • Qiu X X, Zhang F Q. 2016. Prediction and predictability of a catastrophic local extreme precipitation event through cloud-resolving ensemble analysis and forecasting with Doppler radar observations. Sci China Earth Sci, 59: 518–532

    Article  Google Scholar 

  • Raska P, Klimes J, Dubisar J. 2015. Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: Examples from regions with different historical development. Land Degrad Develop, 26: 142–157

    Article  Google Scholar 

  • Scaioni M, Longoni L, Melillo V, Papini M. 2014. Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sens, 6: 9600–9652

    Article  Google Scholar 

  • Shen Y, Pan Y, Yu J J, Zhao P, Zhou Z J. 2013. Quality assessment of hourly merged precipitation product over China (in Chinese). Trans Atmos Sci, 36: 37–46

    Google Scholar 

  • Sorooshian S, Hsu K L, Gao X, Gupta H V, Imam B, Braithwaite D. 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Amer Meteorol Soc, 81: 2035–2046

    Article  Google Scholar 

  • Wu W, Sidle R C. 1995. A distributed slope stability model for steep forested basins. Water Resour Res, 31: 2097–2110

    Article  Google Scholar 

  • Xu W, Zipser E J, Liu C. 2009. Rainfall characteristics and convective properties of Mei-Yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon Weather Rev, 137: 4261–4275

    Article  Google Scholar 

  • Yin Y. 2004. Initial study on the hazard-relief strategy of geological hazard in China (in Chinese). Chin J Geol Hazard Control, 15: 1–8

    Google Scholar 

  • Yong B, Hong Y, Ren L L, Gourley J J, Huffman G J, Chen X, Wang W, Khan S I. 2012. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J Geophys Res, 117: D09108

    Article  Google Scholar 

  • Zhu S B, Shi Y L, Lu M, **e F R. 2013. Dynamic mechanisms of earthquaketriggered landslides. Sci China Earth Sci, 56: 1769–1779

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41501458), China Postdoctoral Science Foundation Funded Project (Grant No. 2016M592860), National Basic Research Program of China (Grant No. 2013CB733204), Key Laboratory of Mining Spatial Information Technology of NASMG (Grant Nos. KLM201309), Science Program of Shanghai Normal University (Grant No. SK201525), the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development (Grant Nos. 2013LASW-A09 & SKHL1310) and the Center of Spatial Information Science and Sustainable Development Applications, Tongji University, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WeiYue Li or KaiHang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, C., Scaioni, M. et al. Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds. Sci. China Earth Sci. 60, 720–732 (2017). https://doi.org/10.1007/s11430-016-9008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9008-4

Keywords

Navigation