Log in

Targeting lncRNA16 by GalNAc-siRNA conjugates facilitates chemotherapeutic sensibilization via the HBB/NDUFAF5/ROS pathway

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Chemoresistance is a significant barrier to effective cancer treatment. Potential mechanisms for chemoresistance include reactive oxygen species (ROS) accumulation and expression of chemoresistance-promoting genes. Here, we report a novel function of lncRNA16 in the inhibition of ROS generation and the progression of chemoresistance. By analyzing the serum levels of lncRNA16 in a cohort of 35 patients with non-small cell lung cancer (NSCLC) and paired serum samples pre- and post-treatment from 10 NSCLC patients receiving neoadjuvant platinum-based chemotherapy, performing immunohistochemistry (IHC) assays on 188 NSCLC tumor samples, using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) assays, as well as RNA immunoprecipitation (RIP) and RNA pull-down analyses, we discovered that patients with increased serum levels of lncRNA16 exhibited a poor response to platinum-based chemotherapy. The expression of hemoglobin subunit beta (HBB) and NDUFAF5 significantly increases with the development of chemoresistance. LncRNA16 binds to HBB and promotes HBB accumulation by inhibiting autophagy. LncRNA16 can also inhibit ROS generation via the HBB/NDUFAF5 axis and function as a scaffold to facilitate the colocalization of HBB and NDUFAF5 in the mitochondria. Importantly, preclinical studies in mouse models of chemo-resistant NSCLC have suggested that lncRNA16 targeting by trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA restores chemosensitivity and results in tumor growth inhibition with no detectable toxicity in vivo. Overall, lncRNA16 is a promising therapeutic target for overcoming chemoresistance, and the combination of first-line platinum-based chemotherapy with lncRNA16 intervention can substantially enhance anti-tumor efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  • Aguilar, R., Spencer, K.B., Kesner, B., Rizvi, N.F., Badmalia, M.D., Mrozowich, T., Mortison, J.D., Rivera, C., Smith, G.F., Burchard, J., et al. (2022). Targeting **st with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166.

    Article  CAS  PubMed  Google Scholar 

  • Ambardekar, V.V., Han, H.Y., Varney, M.L., Vinogradov, S.V., Singh, R.K., and Vetro, J.A. (2011). The modification of siRNA with 3′ cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes. Biomaterials 32, 1404–1411.

    Article  CAS  PubMed  Google Scholar 

  • Arena, G., Cissé, M.Y., Pyrdziak, S., Chatre, L., Riscal, R., Fuentes, M., Arnold, J.J., Kastner, M., Gayte, L., Bertrand-Gaday, C., et al. (2018). Mitochondrial MDM2 regulates respiratory complex I activity independently of p53. Mol Cell 69, 594–609.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviñó, A., Clua, A., Bleda, M.J., Eritja, R., and Fàbrega, C. (2021). Evaluation of floxuridine oligonucleotide conjugates carrying potential enhancers of cellular uptake. Int J Mol Sci 22, 5678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhola, N.E., Balko, J.M., Dugger, T.C., Kuba, M.G., Sánchez, V., Sanders, M., Stanford, J., Cook, R.S., and Arteaga, C.L. (2013). TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123, 1348–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, C.R., Gupta, S., Qin, J., Racie, T., He, G., Lentini, S., Malone, R., Yu, M., Matsuda, S., Shulga-Morskaya, S., et al. (2020). Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res 48, 11827–11844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carilla-Latorre, S., Annesley, S.J., Muñoz-Braceras, S., Fisher, P.R., and Escalante, R. (2013). Ndufaf5 deficiency in the Dictyostelium model: new roles in autophagy and development. Mol Biol Cell, 24, 1519–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathomas, R., Lorch, A., Bruins, H.M., Compérat, E.M., Cowan, N.C., Efstathiou, J.A., Fietkau, R., Gakis, G., Hernández, V., Espinós, E.L., et al. (2022). The 2021 updated European Association of Urology guidelines on metastatic urothelial carcinoma. Eur Urol 81, 95–103.

    Article  PubMed  Google Scholar 

  • Choi, H.J., Jhe, Y.L., Kim, J., Lim, J.Y., Lee, J.E., Shin, M.K., and Cheong, J.H. (2020). FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol 36, 101589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M.E., Zuckerman, J.E., Choi, C.H.J., Seligson, D., Tolcher, A., Alabi, C.A., Yen, Y., Heidel, J.D., and Ribas, A. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, X.Y., Hu, H.Y., Huang, K.N., Wei, R.Q., Min, J., Qi, C., Tang, H., and Qin, X. (2020). Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma. Cancer Sci 111, 489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Fiedorczuk, K., and Sazanov, L.A. (2018). Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol 28, 835–867.

    Article  CAS  PubMed  Google Scholar 

  • Fu, H., Zhang, Z., Li, D., Lv, Q., Chen, S., Zhang, Z., and Wu, M. (2022). LncRNA PELATON, a ferroptosis suppressor and prognositic signature for GBM. Front Oncol 12, 817737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galsky, M.D., Hahn, N.M., Rosenberg, J., Sonpavde, G., Hutson, T., Oh, W.K., Dreicer, R., Vogelzang, N., Sternberg, C.N., Bajorin, D.F., et al. (2011). Treatment of patients with metastatic urothelial cancer “Unfit” for cisplatin-based chemotherapy. J Clin Oncol 29, 2432–2438.

    Article  PubMed  Google Scholar 

  • Gong, N., Teng, X., Li, J., and Liang, X.J. (2019). Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 Inhibits cancer metastasis. ACS Appl Mater Interfaces 11, 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwon, Y., Maxwell, B.A., Kolaitis, R.M., Zhang, P., Kim, H.J., and Taylor, J.P. (2021). Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna, N., Johnson, D., Temin, S., BakerJr, S., Brahmer, J., Ellis, P.M., Giaccone, G., Hesketh, P.J., Jaiyesimi, I., Leighl, N.B., et al. (2017). Systemic therapy for stage IV non-small-cell lung cancer: american society of clinical oncology clinical practice guideline update. J Clin Oncol 35, 3484–3515.

    Article  CAS  PubMed  Google Scholar 

  • He, P., Zhang, C., Chen, G., and Shen, S. (2021). Loss of lncRNA SNHG8 promotes epithelial-mesenchymal transition by destabilizing CDH1 mRNA. Sci China Life Sci 64, 1858–1867.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Zheng, S., Guo, Z., de Mollerat du Jeu, X., Liang, X.J., Yang, Z., Zhang, H. Y., Gao, S., and Liang, Z. (2022). Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B. Sig Transduct Target Ther 7, 38.

    Article  CAS  Google Scholar 

  • Kanasty, R., Dorkin, J.R., Vegas, A., and Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nat Mater 12, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Giltnane, J.M., Balko, J.M., Schwarz, L.J., Guerrero-Zotano, A.L., Hutchinson, K.E., Nixon, M.J., Estrada, M.V., Sánchez, V., Sanders, M.E., et al. (2017). MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26, 633–647.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al. (2022). Gene editing and its applications in biomedicine. Sci China Life Sci 65, 660–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Wu, Z., Wang, Y., Mei, Q., Fu, X., and Han, W. (2013). Characterization of adult α- and β-globin elevated by hydrogen peroxide in cervical cancer cells that play a cytoprotective role against oxidative insults. PLOS ONE 8, e54342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Ding, J., Xu, X., Shi, R., Saw, P.E., Wang, J., Chung, S., Li, W., Aljaeid, B.M., Lee, R.J., et al. (2020). Dual hypoxia-targeting RNAi nanomedicine for precision cancer therapy. Nano Lett 20, 4857–4863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., Chen, H., Su, S., Wang, T., Zhang, C., Fida, G., Cui, S., Zhao, J., and Gu, Y. (2015). Galactose as broad ligand for multiple tumor imaging and therapy. J Cancer 6, 658–670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui, M., and Corey, D.R. (2017). Non-coding RNAs as drug targets. Nat Rev Drug Discov 16, 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Nair, J.K., Attarwala, H., Sehgal, A., Wang, Q., Aluri, K., Zhang, X., Gao, M., Liu, J., Indrakanti, R., Schofield, S., et al. (2017). Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45, 10969–10977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newby, G.A., Yen, J.S., Woodard, K.J., Mayuranathan, T., Lazzarotto, C.R., Li, Y., Sheppard-Tillman, H., Porter, S.N., Yao, Y., Mayberry, K., et al. (2021). Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NSCLC Meta-analysis Collaborative Group. (2014). Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet 383, 1561–1571.

    Article  PubMed Central  Google Scholar 

  • Pan, Y., Lu, X., Shu, G., Cen, J., Lu, J., Zhou, M., Huang, K., Dong, J., Li, J., Lin, H., et al. (2023). Extracellular vesicle-mediated transfer of lncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma. Cancer Res 83, 103–116.

    Article  CAS  PubMed  Google Scholar 

  • Paschen, S.A., and Neupert, W. (2001). Protein import into mitochondria. IUBMB Life 52, 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Patil, D.P., Chen, C.K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M., and Jaffrey, S.R. (2016). m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paudel, R.R., Lu, D., Roy Chowdhury, S., Monroy, E.Y., and Wang, J. (2023). Targeted protein degradation via lysosomes. Biochemistry 62, 564–579.

    Article  CAS  PubMed  Google Scholar 

  • Petrov, R.A., Mefedova, S.R., Yamansarov, E.Y., Maklakova, S.Y., Grishin, D.A., Lopatukhina, E.V., Burenina, O.Y., Lopukhov, A.V., Kovalev, S.V., Timchenko, Y. V., et al. (2021). New small-molecule glycoconjugates of docetaxel and GalNAc for targeted delivery to hepatocellular carcinoma. Mol Pharm 18, 461–468.

    Article  CAS  PubMed  Google Scholar 

  • Pignata, S., C Cecere, S., Du Bois, A., Harter, P., and Heitz, F. (2017). Treatment of recurrent ovarian cancer. Ann Oncol 28, viii51–viii56.

    Article  CAS  PubMed  Google Scholar 

  • Pillai, A.S., Chandler, S.A., Liu, Y., Signore, A.V., Cortez-Romero, C.R., Benesch, J.L.P., Laganowsky, A., Storz, J.F., Hochberg, G.K.A., and Thornton, J.W. (2020). Origin of complexity in haemoglobin evolution. Nature 581, 480–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, X., Chen, S., He, H., Wen, W., and Wang, H. (2021). The role and potential application of extracellular vesicles in liver cancer. Sci China Life Sci 64, 1281–1294.

    Article  CAS  PubMed  Google Scholar 

  • Shah, N., and Sukumar, S. (2010). The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10, 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Q., Li, Y., Li, S., **, L., Lai, H., Wu, Y., Cai, Z., Zhu, M., Li, Q., Li, Y., et al. (2020). LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun 11, 5513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirnaomics, Inc. (2020). Sirnaomics announces positive topline results from interim analysis of ongoing phase II clinical trial evaluating STP705 in cutaneous squamous cell carcinoma in situ (isSCC) (FirstWord Pharma).

  • Stine, Z.E., Schug, Z.T., Salvino, J.M., and Dang, C.V. (2022). Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21, 141–162.

    Article  CAS  PubMed  Google Scholar 

  • Sugiana, C., Pagliarini, D.J., McKenzie, M., Kirby, D.M., Salemi, R., Abu-Amero, K.K., Dahl, H.H.M., Hutchison, W.M., Vascotto, K.A., Smith, S.M., et al. (2008). Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83, 468–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, P., Han, Y., Zhu, Y., Hu, K., Huang, S., Tan, J., Wang, M., Wu, H., and Tang, G. (2020). RETRACTED: radiosynthesis and biological evaluation of fluorine-18 labeled N-acetylgalactosamine derivative [18F]FPGalNAc for PET imaging of asialoglycoprotein receptor-positive tumors. Nucl Med Biol 88–89, 1–9.

    Article  PubMed  Google Scholar 

  • Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viney, N.J., van Capelleveen, J.C., Geary, R.S., **a, S., Tami, J.A., Yu, R.Z., Marcovina, S.M., Hughes, S.G., Graham, M.J., Crooke, R.M., et al. (2016). Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388, 2239–2253.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Yu, G., Wang, Z., Jacobson, O., Lin, L.S., Yang, W., Deng, H., He, Z., Liu, Y., Chen, Z.Y., et al. (2019). Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew Chem Int Ed 58, 14758–14763.

    Article  CAS  Google Scholar 

  • Wang, Y Q., Wang, X., Yan, S., Yang, Y., and Wu, N. (2017). Progress of neoadjuvant therapy combined with surgery in non-small cell lung cancer (in Chinese). Chinese Journal of Lung Cancer, 20, 352–360.

    PubMed  Google Scholar 

  • West, A.P., Brodsky, I.E., Rahner, C., Woo, D.K., Erdjument-Bromage, H., Tempst, P., Walsh, M.C., Choi, Y., Shadel, G.S., and Ghosh, S. (2011). TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkle, M., El-Daly, S.M., Fabbri, M., and Calin, G.A. (2021). Noncoding RNA therapeutics–challenges and potential solutions. Nat Rev Drug Discov 20, 629–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Wang, C., Zhang, P., Gao, X., Guan, W., Wang, F., Li, X., Yuan, J., Dou, H., and Xu, G. (2022). Enhanced intracellular reactive oxygen species by photodynamic therapy effectively promotes chemoresistant cell death. Int J Biol Sci 18, 374–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, F., Hu, A., Guo, Y., Wang, J., Li, D., Wang, X., **, S., Yuan, B., Cai, S., Zhou, Y., et al. (2021). p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitating ZRF1/BRD4 transactivation. Mol Cancer 20, 123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Zhu, C., Wang, X., Kim, K.J., Bartolome, A., Dongiovanni, P., Yates, K.P., Valenti, L., Carrer, M., Sadowski, T., et al. (2021). Hepatocyte TLR4 triggers interhepatocyte Jagged1/Notch signaling to determine NASH-induced fibrosis. Sci Transl Med 13, eabe1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Yue, H., Zhang, M., Luo, J., Liu, L., Wu, W., **ao, T., Chen, X., Chen, X., Zhang, D., et al. (2016). Transcriptional profiling analysis and functional prediction of long noncoding RNAs in cancer. Oncotarget 7, 8131–8142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Xu, C., Gao, X., and Yao, Q. (2022a). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12, 2115–2132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., and Zhang, B. (2023). RNA therapeutics: updates and future potential. Sci China Life Sci 66, 12–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Xu, R., Li, B., **n, Z., Ling, Z., Zhu, W., Li, X., Zhang, P., Fu, Y., Chen, J., et al. (2022b). LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ 29, 351–365.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Kay, M.K., Park, M.H., Meruvu, S., Powell, C., and Choudhury, M. (2022c). LncRNA DLEU2 regulates sirtuins and mitochondrial respiratory chain complex IV: a novel pathway in obesity and offspring’s health. Int J Obes 46, 969–976.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, B., Wang, X., Song, J., Tong, M., Dong, Z., Xu, J., Liu, M., Jiang, Y., Wang, N., et al. (2023). LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis. Sci China Life Sci 66, 783–799.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Li, D., Dong, X., Zhang, X., Liu, J., Peng, L., Meng, B., Hua, Q., Pei, X., Zhao, L., et al. (2022d). LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. Sci China Life Sci 65, 1198–1212.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., Liu, Y., Wang, Y., Zhang, D., Zou, Y., Ruan, W., Yin, J., Tao, W., Park, J.B., and Shi, B. (2019). ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv Mater 31, e1903277.

    Article  PubMed  Google Scholar 

  • Zheng, Y., Miyamoto, D.T., Wittner, B.S., Sullivan, J.P., Aceto, N., Jordan, N.V., Yu, M., Karabacak, N.M., Comaills, V., Morris, R., et al. (2017). Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun 8, 14344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, H., Zhang, L., Yan, S., Li, W., Cui, J., Zhu, M., **a, N., Yang, Y., Yuan, J., Chen, X., et al. (2017). LncRNA16 is a potential biomarker for diagnosis of early-stage lung cancer that promotes cell proliferation by regulating the cell cycle. Oncotarget 8, 7867–7877.

    Article  PubMed  Google Scholar 

  • Zou, Y., Sun, X., Wang, Y., Yan, C., Liu, Y., Li, J., Zhang, D., Zheng, M., Chung, R.S., and Shi, B. (2020). Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv Mater 32, e2000416.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81972842, 82373082, 81988101, 82173152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qimin Zhan or Nan Wu.

Ethics declarations

The author(s) declare that they have no conflict of interest. The Ethics Committee of Peking University Cancer Hospital and Institute approved all procedures performed in studies involving human participants (2020KT50) and were by the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All animal protocols were approved by the Animal Care and Use Committee of the Peking University Cancer Hospital & Institute (EAEC 2018–11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y., Liu, B. et al. Targeting lncRNA16 by GalNAc-siRNA conjugates facilitates chemotherapeutic sensibilization via the HBB/NDUFAF5/ROS pathway. Sci. China Life Sci. 67, 663–679 (2024). https://doi.org/10.1007/s11427-023-2434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2434-8

Navigation