Log in

Long-lasting impairments in rodent oxygen-induced retinopathy measured by retinal vessel density and visual function

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

In mild or moderate retinopathy of prematurity (ROP), retinal vessels undergo obliteration, proliferation, and regression. Despite complete regression of vessel abnormalities, a variety of visual impairments have been reported. Rodent oxygen-induced retinopathy (OIR) is widely used as a model to study ROP. However, the long-term changes of OIR model remain unclear. The aim of this study is to examine long term changes of retinal vessel and visual function in a rodent OIR model resembling human mild or moderate ROP. In this study, after subjecting the animals to 80% oxygen (O2) for 5–7 d, the retinal vessel density at postnatal day 12 (P12) was approximately 30% lower than that in the age-matched control, but this difference was not significant between the groups. Vessel abnormalities, such as vessel tortuosity, neovascular tufts, and the number of vessels protruding into the vitreous, peaked between P17 and P20. Despite the regression of many abnormalities, vessel density in the OIR group was 36% and 32% lower than that in the control animals at 6 weeks and 4 months, respectively. The visual acuity and contrast sensitivity were impaired in the OIR group when measured at 2, 3 and 4 months. Therefore, the rodent OIR model exhibited long-lasting reduction in retinal vessel density and visual impairments, similar to those observed in mild or moderate human ROP. This study suggests that the rodent OIR model can be used to explore possible interventions for mild and moderate human ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arámbulo, O., Dib, G., Iturralde, J., Duran, F., Brito, M., and Fortes Filho, J.B. (2015). Intravitreal ranibizumab as a primary or a combined treatment for severe retinopathy of prematurity. Clin Ophthalmol 19, 2027–2032.

    Google Scholar 

  • Bossi, E., and Koerner, F. (1995). Retinopathy of prematurity. Intensive Care Med 21, 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Weng, S., Deng, Q., Xu, Z., and He, S. (2009). Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina. J Physiol 587, 819–828.

    Article  CAS  PubMed  Google Scholar 

  • Chung, E.J., Kim, J.H., Ahn, H.S., and Koh, H.J. (2007). Combination of laser photocoagulation and intravitreal bevacizumab (Avastin®) for aggressive zone I retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 245, 1727–1730.

    Article  CAS  Google Scholar 

  • Connor, K.M., Krah, N.M., Dennison, R.J., Aderman, C.M., Chen, J., Guerin, K.I., Sapieha, P., Stahl, A., Willett, K.L., and Smith, L.E.H. (2009). Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4, 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryotherapy for Retinopathy of Prematurity Cooperative Group. (1988). Multicenter trial of cryotherapy for retinopathy of prematurity: preliminary results. Arch Ophthalmol 106, 471–479.

  • Dembinska, O., Rojas, L.M., Chemtob, S., Lachapelle, P. (2002). Evidence for a brief period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 43, 2481–2490.

    PubMed  Google Scholar 

  • Diao, L., Sun, W., Deng, Q., and He, S. (2004). Development of the mouse retina: emerging morphological diversity of the ganglion cells. J Neurobiol 61, 236–249.

    Article  PubMed  Google Scholar 

  • Dobson, V., Quinn, G.E., Abramov, I., Hardy, R.J., Tung, B., Siatkowski, R. M., Phelps D.L. (1996). Color vision measured with pseudoisochromatic plates at five-and-a-half years in eyes of children from the CRYOROP study. Invest Ophthalmol Vis Sci 37, 2467–2474.

    CAS  PubMed  Google Scholar 

  • Fielder, A.R., and Reynolds, J.D. (2001). Retinopathy of prematurity: clinical aspects. Semin Neonatol 6, 461–475.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, L.J. (1979). Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. J Comp Neurol 187, 359–372.

    Article  CAS  PubMed  Google Scholar 

  • Flynn, J.T., O'Grady, G.E., Herrera, J., Kushner, B.J., Cantolino, S., and Milam, W. (1977). Retrolental fibroplasia: I. clinical observations. Arch Ophthalmol 95, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, D.L., Sheps, S.B., Uh, S.H., Schechter, M.T., McCormick, A.Q. (1990). Retinopathy of prematurity-induced blindness: birth weightspecific survival and the new epidemic. Pediatrics 86, 405–412.

    CAS  PubMed  Google Scholar 

  • Gilbert, C. (2008). Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Human Dev 84, 77–82.

    Article  Google Scholar 

  • Hammer, D.X., Iftimia, N.V., Ferguson, R.D., Bigelow, C.E., Ustun, T.E., Barnaby, A.M., and Fulton, A.B. (2008). Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol Vis Sci 49, 2061–2070.

    Article  PubMed  Google Scholar 

  • Hansen, R.M., Fulton, A.B. (2000). Background adaptation in children with a history of mild retinopathy of prematurity. Invest Ophthalmol Vis Sci 41, 320–324.

    CAS  PubMed  Google Scholar 

  • Hartnett, M.E. (2015). Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122, 200–210.

    Article  PubMed  Google Scholar 

  • Hartnett, M.E., and Penn, J.S. (2012). Mechanisms and management of retinopathy of prematurity. N Engl J Med 367, 2515–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellström, A., Smith, L.E., and Dammann, O. (2013). Retinopathy of prematurity. Lancet 382, 1445–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, D.G., and Mukai, S. (1992). Retinopathy of prematurity: pathogenesis, diagnosis, and treatment. Int Ophthalmol Clin 32, 163–184.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, E., Rydberg, A., and Holmström, G. (2006). Contrast sensitivity in 10 year old preterm and full term children: a population based study. Brit J Ophthalmol 90, 87–90.

    Article  CAS  Google Scholar 

  • Lue, C.L., Hansen, R.M., Reisner, D.S., Findl, O., Petersen, R.A., and Fulton, A.B. (1995). The course of myopia in children with mild retinopathy of prematurity. Vision Res 35, 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  • Matsubara, M., Saito, Y., Nakanishi-Ueda, T., Ueda, T., Hisamitsu, T., Koide, R., and Takahashi, H. (2014). Influence of the difference of breastfeeding volume on a rat model of oxygen-induced retinopathy. J Clin Biochem Nutr 55, 129–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mintz-Hittner, H.A., Kennedy, K.A., Chuang, A.Z., and Chuang, A.Z. (2011). Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364, 603–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz, A., Hansen, R., and Fulton, A. (2005). Early ametropia and rod photoreceptor function in retinopathy of prematurity. Optom Vis Sci 82, 307–317.

    Article  PubMed  Google Scholar 

  • O’Connor, A.R., Stephenson, T., Johnson, A., Tobin, M.J., Moseley, M.J., Ratib, S., Ng, Y., and Fielder, A.R. (2002). Long-term ophthalmic outcome of low birth weight children with and without retinopathy of prematurity. Pediatrics 109, 12–18.

    Article  PubMed  Google Scholar 

  • O’Connor, A.R., Stephenson, T.J., Johnson, A., Tobin, M.J., Ratib, S., Moseley, M., and Fielder, A.R. (2004). Visual function in low birthweight children. Brit J Ophthalmol 88, 1149–1153.

    Article  Google Scholar 

  • Penn, J.S., Henry, M.M., and Tolman, B.L. (1994a). Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res 36, 724–731.

    Article  CAS  PubMed  Google Scholar 

  • Penn, J.S., Henry, M.M., Wall, P.T., Tolman, B.L. (1995). The range of PaO2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest Ophthalmol Vis Sci 36, 2063–2070.

    CAS  PubMed  Google Scholar 

  • Penn, J.S., Tolman, B.L., Henry, M.M. (1994b). Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35, 3429–3435.

    CAS  PubMed  Google Scholar 

  • Penn, J.S., Tolman, B.L., Lowery, L.A. (1993). Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest Ophthalmol Vis Sci 34, 576–585.

    CAS  PubMed  Google Scholar 

  • Prusky, G.T., West, P.W.R., and Douglas, R.M. (2000). Behavioral assessment of visual acuity in mice and rats. Vision Res 40, 2201–2209.

    Article  CAS  PubMed  Google Scholar 

  • Reisner, D.S., Hansen, R.M., Findl, O., Petersen, R.A., Fulton, A.B. (1997). Dark-adapted thresholds in children with histories of mild retinopathy of prematurity. Invest Ophthalmol Vis Sci 38, 1175–1183.

    CAS  PubMed  Google Scholar 

  • Ren, L., Liang, H., Diao, L., and He, S. (2010). Changing dendritic field size of mouse retinal ganglion cells in early postnatal development. Devel Neurobiol 70, 397–407.

    Article  Google Scholar 

  • Ren, R., Li, Y., Liu, Z., Liu, K., and He, S. (2012). Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 53, 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  • Reynaud, X., Vallat, M., Vincent, D., Dorey, C.K. (1991). Protective effect of the Ginkgo biloba extract in the rat model of retinopathy of prematurity (ROP). Invest Ophthalmol Vis Sci 32. 1147.

    Google Scholar 

  • Ricci, B., Ricci, F., and Maggiano, N. (2000). Oxygen-induced retinopathy in the newborn rat: morphological and immunohistological findings in animals treated with topical timolol maleate. Ophthalmologica 214, 136–139.

    Article  CAS  PubMed  Google Scholar 

  • Ridler, T.W., Calvard, S. (1978). Picture thresholding using an iterative selection method. In: IEEE Systems, Man, and Cybernetics Society 8, 630–632.

    Google Scholar 

  • Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, P.K., Narendran, V., Tawansy, K.A., Raghuram, A., and Narendran, K. (2007). Intravitreal bevacizumab (Avastin) for post laser anterior segment ischemia in aggressive posterior retinopathy of prematurity. Ind J Ophthalmol 55, 75–76.

    Article  Google Scholar 

  • Shih, S.C., Ju, M., Liu, N., and Smith, L.E.H. (2003). Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 112, 50–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, L.E., Wesolowski, E., McLellan, A., Kostyk, S.K., D’Amato, R., Sullivan, R., et al. (1994). Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35, 101–111.

    CAS  PubMed  Google Scholar 

  • Steinkuller, P.G., Du, L., Gilbert, C., Foster, A., Collins, M.L., and Coats, D.K. (1999). Childhood blindness. J Aapos 3, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Han, X., and He, S. (2011). Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity. PLoS ONE 6, e19477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasman, W. (1986). A pilot study on cryotherapy and active retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 224, 201–202.

    Article  CAS  Google Scholar 

  • Tasman, W., and Brown, G.C. (1989). Progressive visual loss in adults with retinopathy of prematurity (ROP). Graefe’s Arch Clin Exp Ophthalmol 227, 309–311.

    Article  CAS  Google Scholar 

  • Tasman, W., Brown, G.C., Naidoff, M., Schaffer, D.B., Benson, W., Quinn, G., and Diamond, G. (1987). Cryotherapy for active retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 225, 3–4.

    Article  CAS  Google Scholar 

  • Tian, N., and Copenhagen, D.R. (2001). Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron 32, 439–449.

    Article  CAS  PubMed  Google Scholar 

  • Ventresca, M.R., Gonder, J.R., Tanswell, A.K. (1990). Oxygen-induced proliferative retinopathy in the newborn rat. Can J Ophthalmol 25, 186–189.

    CAS  PubMed  Google Scholar 

  • Weng, S., Sun, W., and He, S. (2005). Identification of ON-OFF directionselective ganglion cells in the mouse retina. J Physiol 562, 915–923.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., and Tian, N. (2004). Pathway-specific maturation, visual deprivation, and development of retinal pathway. Neuroscientist 10, 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Xue, J., and Cooper, N.G.F. (2001). The modification of NMDA receptors by visual experience in the rat retina is age dependent. Mol Brain Res 91, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X.L., Shi, X.M., and He, S.G. (2010). Properties of mouse retinal ganglion cell dendritic growth during postnatal development. Sci China Life Sci 53, 669–676.

    Article  PubMed  Google Scholar 

  • Yi, Z., Su, Y., Zhou, Y., Zheng, H., Ye, M., Xu, Y., and Chen, C. (2015). Effects of intravitreal ranibizumab in the treatment of retinopathy of prematurity in chinese infants. Curr Eye Res 41, 1092–1097.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., **ao, C., and Pu, M. (2017). High glucose levels impact visual response properties of retinal ganglion cells in C57 mice—an in vitro physiological study. Sci China Life Sci 60, 1428–1435.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Key Project (31030036) to SH, a National Natural Science Foundation of China Project (81570863) and Science and Technology Supporting Program by Department of Science and Technology, Sichuan Province (2016SZ0024) to FL. We would like to thank Ms. Jiaying Ju for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shen, K., Lu, F. et al. Long-lasting impairments in rodent oxygen-induced retinopathy measured by retinal vessel density and visual function. Sci. China Life Sci. 62, 681–690 (2019). https://doi.org/10.1007/s11427-018-9337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9337-0

Keywords

Navigation