Log in

Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Plant architecture determines grain production in rice (Oryza sativa) and is affected by important agronomic traits such as tillering, plant height, and panicle morphology. Many key genes involved in controlling the initiation and outgrowth of axillary buds, the elongation of stems, and the architecture of inflorescences have been isolated and analyzed. Previous studies have shown that SiPf40, which was identified from a foxtail millet (Setaria italica) immature seed cDNA library, causes extra branches and tillers in SiPf40-transgenic tobacco and foxtail millet, respectively. To reconfirm its function, we generated transgenic rice plants overexpressing SiPf40 under the control of the ubiquitin promoter. SiPf40-overexpressing transgenic plants have a greater tillering number and a wider tiller angle than wild-type plants. Their root architecture is modified by the promotion of lateral root development, and the distribution of xylem and phloem in the vascular bundle is affected. Analysis of hormone levels showed that the ratios of indole-3-acetic acid/zeatin (IAA/ZR) and IAA/gibberellic acid (IAA/GA) decreased in SiPf40-transgenic plants compared with wild-type plants. These findings strongly suggest that SiPf40 plays an important role in plant architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996, 93: 5624–5628 1:CAS:528:DyaK28Xjt1Ojt7w%3D, 10.1073/pnas.93.11.5624, 8643627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA, 1996a, 93: 2454–2458 1:CAS:528:DyaK28XhvVSktLY%3D, 10.1073/pnas.93.6.2454, 8637895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Zhao H, Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem, 1996b, 271: 23203–23210 1:CAS:528:DyaK28XlvVCgs7s%3D, 10.1074/jbc.271.38.23203, 8798516

    Article  PubMed  CAS  Google Scholar 

  4. Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA, 1998, 95: 7220–7224 1:CAS:528:DyaK1cXjslymt7g%3D, 10.1073/pnas.95.12.7220, 9618566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Vert G, Briat J F, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J, 2001, 26: 181–189 1:CAS:528:DC%2BD3MXkvVSnsr0%3D, 10.1046/j.1365-313x.2001.01018.x, 11389759

    Article  PubMed  CAS  Google Scholar 

  6. Assunção A G L, Da Costa Martins P, De Folter S, et al. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ, 2001, 24: 217–226 10.1111/j.1365-3040.2001.00666.x

    Article  Google Scholar 

  7. Pence N S, Larsen P B, Ebbs S D, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA, 2000, 97: 4956–4960 1:CAS:528:DC%2BD3c**vFKisrk%3D, 10.1073/pnas.97.9.4956, 10781104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Plaza S, Tearall K L, Zhao F J, et al. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot, 2007, 58: 1717–1728 1:CAS:528:DC%2BD2sXmsFeisrg%3D, 10.1093/jxb/erm025, 17404382

    Article  PubMed  CAS  Google Scholar 

  9. Cohen C K, Fox T C, Garvin D F, et al. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol, 1998, 116: 1063–1072 1:CAS:528:DyaK1c**tVOjs7g%3D, 10.1104/pp.116.3.1063, 9501139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Moreau S, Thomson R M, Kaiser B N, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem, 2002, 277: 4738–4746 1:CAS:528:DC%2BD38XhsFeqt7s%3D, 10.1074/jbc.M106754200, 11706025

    Article  PubMed  CAS  Google Scholar 

  11. Eckhardt U, Mas Marques A, Buckhout T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol, 45: 437–448

  12. Schikora A, Thimm O, Linke B, et al. Expression, localization, and regulation of the iron transporter LeIRT1 in tomato roots. Planta, 2006, 284: 101–108 1:CAS:528:DC%2BD28XntF2is7Y%3D

    CAS  Google Scholar 

  13. Burleigh S H, Kristensen B K, Bechmann I E. A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol, 2003, 52: 1077–1088 1:CAS:528:DC%2BD3sXmvVais7k%3D, 10.1023/A:1025479701246, 14558666

    Article  PubMed  CAS  Google Scholar 

  14. Lo S F, Yang S Y, Chen K T, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20: 2603–2618 1:CAS:528:DC%2BD1cXhsFWms7nF, 10.1105/tpc.108.060913, 18952778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bughio N, Yamaguchi H, Nishizawa N K, et al. Cloning an iron-regulated metal transporter from rice. J Exp Bot, 2002, 53: 1677–1682 1:CAS:528:DC%2BD38XlsFSmtr8%3D, 10.1093/jxb/erf004, 12096107

    Article  PubMed  CAS  Google Scholar 

  16. Ishimaru Y, Suzuki M, Kobayashi T, et al. OsZIP4, a novel zincregulated zinc transporter in rice. J Exp Bot, 2005, 56: 3207–3214 1:CAS:528:DC%2BD2MXht1GlsbfP, 10.1093/jxb/eri317, 16263903

    Article  PubMed  CAS  Google Scholar 

  17. Ramesh S A, Shin R, Eide D J, et al. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol, 2003, 133: 126–134 1:CAS:528:DC%2BD3sXntlaitLs%3D, 10.1104/pp.103.026815, 12970480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Yang X, Huang J, Jiang Y, et al. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep, 2009, 36: 281–287 1:CAS:528:DC%2BD1cXhsFCmsLfF, 10.1007/s11033-007-9177-0, 18038191

    Article  PubMed  CAS  Google Scholar 

  19. Xu Y G, Wang B S, Yu J J, et al. Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays. Fuctional Plant Biology, 2010, 37: 194–205 1:CAS:528:DC%2BC3c**sVCgu7o%3D, 10.1071/FP09045

    Article  CAS  Google Scholar 

  20. Gitan R S, Shababi M, Kramer M, et al. A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem, 2003, 278: 39558–39564 1:CAS:528:DC%2BD3sXnvFantLg%3D, 10.1074/jbc.M302760200, 12893829

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Qian Q, Fu Z, et al. Control of tillering in rice. Nature, 2003, 422: 618–621 1:CAS:528:DC%2BD3s**slCgtL0%3D, 10.1038/nature01518, 12687001

    Article  PubMed  CAS  Google Scholar 

  22. Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33: 513–520 1:CAS:528:DC%2BD3sXhslOgt7Y%3D, 10.1046/j.1365-313X.2003.01648.x, 12581309

    Article  PubMed  CAS  Google Scholar 

  23. Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683–692 1:CAS:528:DC%2BD2cXhslGjsbc%3D, 10.1007/s00425-004-1203-z, 14760535

    Article  PubMed  CAS  Google Scholar 

  24. Richards D E, Peng J, Harberd N P. Plant GRAS and metazoan STATs: One family? Bioessays, 2000, 22: 573–577 1:CAS:528:DC%2BD3MXmslSiu70%3D, 10.1002/(SICI)1521-1878(200006)22:6<573::AID-BIES10>3.0.CO;2-H, 10842311

    Article  PubMed  CAS  Google Scholar 

  25. Aloni R, Aloni E, Langhans M, et al. Role of cytokinin and auxin in sha** root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot, 2006, 97: 883–893 1:CAS:528:DC%2BD28XmtFahtLY%3D, 10.1093/aob/mcl027, 16473866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Leyser O. Regulation of shoot branching by auxin. Trends Plant Sci, 2003, 8: 541–545 1:CAS:528:DC%2BD3sXos1Cnsrk%3D, 10.1016/j.tplants.2003.09.008, 14607099

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Y, Hu Y, Dai M, et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009, 21: 736–748 1:CAS:528:DC%2BD1MXlsFyltbo%3D, 10.1105/tpc.108.061655, 19258439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Inukai Y, Sakamoto T, Ueguchi-Tanaka M, et al. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell, 2005, 17: 1387–1396 1:CAS:528:DC%2BD2MXksVKksrY%3D, 10.1105/tpc.105.030981, 15829602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Liu H, Wang S, Yu X, et al. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J, 2005, 43: 47–56 10.1111/j.1365-313X.2005.02434.x, 15960615

    Article  PubMed  Google Scholar 

  30. Liu Y, Feng X, Xu Y, et al. Overexpression of foxtail millet ZIP-like gene (SiPf40) affects lateral bud outgrowth in tobacco and foxtail millet. Plant Physiol Biochem, 2009, 47: 1051–1060 1:CAS:528:DC%2BD1MXhsVajsrbK, 10.1016/j.plaphy.2009.08.007, 19766013

    Article  PubMed  CAS  Google Scholar 

  31. Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271–282 1:CAS:528:DyaK2MXhtlGntLc%3D, 10.1046/j.1365-313X.1994.6020271.x, 7920717

    Article  PubMed  CAS  Google Scholar 

  32. Saghai-Maroof M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 81: 8014–818

  33. Sambrook J, Fritsch E T, Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  34. Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem, 1987, 163: 16–20 1:CAS:528:DyaL2sXktlKitr0%3D, 10.1016/0003-2697(87)90086-8, 2441623

    Article  PubMed  CAS  Google Scholar 

  35. Di Laurenzio L, Wysocka-Diller J, Malamy J E, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 1996, 86: 423–433 10.1016/S0092-8674(00)80115-4, 8756724

    Article  PubMed  Google Scholar 

  36. Sembdner G, Atzorn R, Schneider G. Plant hormone conjugation. Plant Mol Biol, 1994, 26: 1459–1481 1:CAS:528:DyaK2MXjvFeksr0%3D, 10.1007/BF00016485, 7858200

    Article  PubMed  CAS  Google Scholar 

  37. Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17 1:CAS:528:DC%2BD38**t1Cmu7Y%3D, 10.1093/dnares/9.1.11, 11939564

    Article  PubMed  CAS  Google Scholar 

  38. Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048 1:CAS:528:DC%2BD38XltF2hu74%3D, 10.1073/pnas.132266399, 12077303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brass-inosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1606 1:CAS:528:DC%2BD3cXnsVyltrw%3D, 10.1105/tpc.12.9.1591, 11006334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yan J B, Tang H, Huang Y Q, et al. Comparative analyses of QTL for important agronomic traits between maize and rice. Acta Genetica Sin, 2004, 31: 1401–1407 1:CAS:528:DC%2BD2MXktlGjtro%3D

    CAS  Google Scholar 

  41. Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol, 2004, 135: 254–265 1:CAS:528:DC%2BD2cXkt12nurs%3D, 10.1104/pp.103.036988, 15122040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Eriksson S, Bjorkman J, Borg S, et al. Salmonella typhimurium mutants that downregulate phagocyte nitric oxide production. Cell Microbiol, 2000, 2: 239–250 1:CAS:528:DC%2BD3cXls1yrsrY%3D, 10.1046/j.1462-5822.2000.00051.x, 11207580

    Article  PubMed  CAS  Google Scholar 

  43. Grotz N, Guerinot M L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta, 2006, 1763: 595–608 1:CAS:528:DC%2BD28XotFGqurk%3D, 10.1016/j.bbamcr.2006.05.014, 16857279

    Article  PubMed  CAS  Google Scholar 

  44. Colangelo E P, Guerinot M L. Put the metal to the petal: Metal uptake and transport throughout plants. Curr Opin Plant Biol, 2006, 9: 322–330 1:CAS:528:DC%2BD28XktVGgur0%3D, 10.1016/j.pbi.2006.03.015, 16616607

    Article  PubMed  CAS  Google Scholar 

  45. **a Y F, Zhao Q, Yu J J. Study of subcellular localization of PF40. Prog Biochem Biophys, 2005, 32: 1020–1025 1:CAS:528:DC%2BD2sXms1Olsrs%3D

    CAS  Google Scholar 

  46. Lasswell J, Rogg L E, Nelson D C, et al. Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell, 2000, 12: 2395–2408 1:CAS:528:DC%2BD3MXns1Shug%3D%3D, 10.1105/tpc.12.12.2395, 11148286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Yang G, Inoue A, Takasaki H, et al. A proteomic approach to analyze auxin- and zinc-responsive protein in rice. J Proteome Res, 2005, 4: 456–463 1:CAS:528:DC%2BD2MXhs1yrsb8%3D, 10.1021/pr049801h, 15822922

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gJuan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, Y., Wang, B., Zhao, Q. et al. Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development. Sci. China Life Sci. 53, 1450–1458 (2010). https://doi.org/10.1007/s11427-010-4090-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4090-5

Keywords

Navigation