Log in

Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Monomer sequence influences the properties and applications of polymers. Consequently, massive efforts have been made to implement sequence control of polymers. In this work, we developed a computer-aided droplet-flow polymerization based on photo-controlled reversible-deactivation radical polymerization (photo-RDRP), enabling synthesis of gradient copolymers of tunable sequential arrangements, low dispersity and good structural fidelity from various monomers without following their intrinsic reactivities, which is a key limitation in sequence control. The obtained gradient copolymers exhibit unique thermal properties and stimulus responsiveness comparing with the random and block counterparts, and their glass transition behaviour could be regulated by the gradient tendency. We believe that the unprecedented gradient photo-RDRP based on flow synthesis opens a robust and versatile avenue to streamline the synthesis of well-defined gradient polymers, and is compatible with other polymerization mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Science, 2013, 341: 1238149

    Article  Google Scholar 

  2. Badi N, Lutz JF. Chem Soc Rev, 2009, 38: 3383–3390

    Article  Google Scholar 

  3. Qu C, He J. Sci China Chem, 2015, 58: 1651–1662

    Article  Google Scholar 

  4. Kim J, Gray MK, Zhou H, Nguyen SBT, Torkelson JM. Macromolecules, 2005, 38: 1037–1040

    Article  Google Scholar 

  5. Lefay C, Charleux B, Save M, Chassenieux C, Guerret O, Magnet S. Polymer, 2006, 47: 1935–1945

    Article  Google Scholar 

  6. Mok MM, Kim J, Torkelson JM. J Polym Sci B Polym Phys, 2008, 46: 48–58

    Article  Google Scholar 

  7. Luo Y, Guo Y, Gao X, Li BG, **e T. Adv Mater, 2013, 25: 743–748

    Article  Google Scholar 

  8. Amonoo JA, Li A, Purdum GE, Sykes ME, Huang B, Palermo EF, McNeil AJ, Shtein M, Loo YL, Green PF. J Mater Chem A, 2015, 3: 20174–20184

    Article  Google Scholar 

  9. Zhang G, Jiang J, Zhang Q, Gao F, Zhan X, Chen F. Langmuir, 2016, 32: 1380–1388

    Article  Google Scholar 

  10. Zheng Z, Gao X, Luo Y, Zhu S. Macromolecules, 2016, 49: 2179–2188

    Article  Google Scholar 

  11. Wang J, Li S, Zhao Q, Song C, Xue Z. Adv Funct Mater 2020: 2008208

  12. Moad G, Rizzardo E, Thang SH. Acc Chem Res, 2008, 41: 1133–1142

    Article  Google Scholar 

  13. Kamigaito M, Ando T, Sawamoto M. Chem Rev, 2001, 101: 3689–3746

    Article  Google Scholar 

  14. Braunecker WA, Matyjaszewski K. Prog Polym Sci, 2007, 32: 93–146

    Article  Google Scholar 

  15. Hawker CJ, Bosman AW, Harth E. Chem Rev, 2001, 101: 3661–3688

    Article  Google Scholar 

  16. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Prog Polym Sci, 2020, 111: 101311

    Article  Google Scholar 

  17. Chen Y, Chen H, Feng M, Dong Y. Eur Polym J, 2016, 85: 489–498

    Article  Google Scholar 

  18. Zhang J, Farias-Mancilla B, Destarac M, Schubert US, Keddie DJ, Guerrero-Sanchez C, Harrisson S. Macromol Rapid Commun, 2018, 39: 1800357

    Article  Google Scholar 

  19. Xu S, Corrigan N, Boyer C. Polym Chem, 2021, 12: 57–68

    Article  Google Scholar 

  20. Xu S, Zhang T, Kuchel RP, Yeow J, Boyer C. Macromol Rapid Commun, 2020, 41: 1900493

    Article  Google Scholar 

  21. Matyjaszewski K, Ziegler MJ, Arehart SV, Greszta D, Pakula T. J Phys Org Chem, 2000, 13: 775–786

    Article  Google Scholar 

  22. Liu X, Wang M, Harrisson S, Debuigne A, Marty JD, Destarac M. ACS Sustain Chem Eng, 2017, 5: 9645–9650

    Article  Google Scholar 

  23. Harrisson S, Ercole F, Muir BW. Polym Chem, 2010, 1: 326–332

    Article  Google Scholar 

  24. Saubern S, Nguyen X, Nguyen V, Gardiner J, Tsanaktsidis J, Chiefari J. Macromol React Eng, 2017, 11: 1600065

    Article  Google Scholar 

  25. Reis MH, Leibfarth FA, Pitet LM. ACS Macro Lett, 2020, 9: 123–133

    Article  Google Scholar 

  26. Buss BL, Miyake GM. Chem Mater, 2018, 30: 3931–3942

    Article  Google Scholar 

  27. Zaquen N, Rubens M, Corrigan N, Xu J, Zetterlund PB, Boyer C, Junkers T. Prog Polym Sci, 2020, 107: 101256

    Article  Google Scholar 

  28. Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Chem Rev, 2016, 116: 10276–10341

    Article  Google Scholar 

  29. Zhong ZR, Chen YN, Zhou Y, Chen M. Chin J Polym Sci, 2021, doi: https://doi.org/10.1007/s10118-021-2529-8

  30. Rubens M, Vrijsen JH, Laun J, Junkers T. Angew Chem Int Ed, 2019, 58: 3183–3187

    Article  Google Scholar 

  31. Walsh DJ, Schinski DA, Schneider RA, Guironnet D. Nat Commun, 2020, 11: 3094

    Article  Google Scholar 

  32. Walsh DJ, Guironnet D. Proc Natl Acad Sci USA, 2019, 116: 1538–1542

    Article  Google Scholar 

  33. Lin B, Hedrick JL, Park NH, Waymouth RM. J Am Chem Soc, 2019, 141: 8921–8927

    Article  Google Scholar 

  34. Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Angew Chem Int Ed, 2019, 58: 5170–5189

    Article  Google Scholar 

  35. Chen M, Zhong M, Johnson JA. Chem Rev, 2016, 116: 10167–10211

    Article  Google Scholar 

  36. Dadashi-Silab S, Doran S, Yagci Y. Chem Rev, 2016, 116: 10212–10275

    Article  Google Scholar 

  37. Zhou Y, Gu Y, Jiang K, Chen M. Macromolecules, 2019, 52: 5611–5617

    Article  Google Scholar 

  38. Reis MH, Varner TP, Leibfarth FA. Macromolecules, 2019, 52: 3551–3557

    Article  Google Scholar 

  39. Nakatani K, Terashima T, Sawamoto M. J Am Chem Soc, 2009, 131: 13600–13601

    Article  Google Scholar 

  40. Rieger E, Blankenburg J, Grune E, Wagner M, Landfester K, Wurm FR. Angew Chem Int Ed, 2018, 57: 2483–2487

    Article  Google Scholar 

  41. Wang Y, Zhao Y, Ye Y, Peng H, Zhou X, **e X, Wang X, Wang F. Angew Chem Int Ed, 2018, 57: 3593–3597

    Article  Google Scholar 

  42. Olsson S, Dahlstrand C, Gogoll A. Dalton Trans, 2018, 47: 11572–11585

    Article  Google Scholar 

  43. Shanmugam S, Cuthbert J, Flum J, Fantin M, Boyer C, Kowalewski T, Matyjaszewski K. Polym Chem, 2019, 10: 2477–2483

    Article  Google Scholar 

  44. Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Adv Sci, 2020, 7: 2001656

    Article  Google Scholar 

  45. **a L, Cheng BF, Zeng TY, Nie X, Chen G, Zhang Z, Zhang WJ, Hong CY, You YZ. Adv Sci, 2020, 7: 1902451

    Article  Google Scholar 

  46. Zhao Y, Ma M, Lin X, Chen M. Angew Chem Int Ed, 2020, 59: 21470–21474

    Article  Google Scholar 

  47. Jiang K, Han S, Ma M, Zhang L, Zhao Y, Chen M. J Am Chem Soc, 2020, 142: 7108–7115

    Article  Google Scholar 

  48. Shen L, Lu Q, Zhu A, Lv X, An Z. ACS Macro Lett, 2017, 6: 625–631

    Article  Google Scholar 

  49. Nie H, Li S, Qian S, Han Z, Zhang W. Angew Chem Int Ed, 2019, 58: 11449–11453

    Article  Google Scholar 

  50. Wu Z, Jung K, Boyer C. Angew Chem Int Ed, 2020, 59: 2013–2017

    Article  Google Scholar 

  51. Li M, Fromel M, Ranaweera D, Rocha S, Boyer C, Pester CW. ACS Macro Lett, 2019, 8: 374–380

    Article  Google Scholar 

  52. Shanmugam S, Boyer C. J Am Chem Soc, 2015, 137: 9988–9999

    Article  Google Scholar 

  53. Shanmugam S, Xu J, Boyer C. J Am Chem Soc, 2015, 137: 9174–9185

    Article  Google Scholar 

  54. Judzewitsch PR, Corrigan N, Trujillo F, Xu J, Moad G, Hawker CJ, Wong EHH, Boyer C. Macromolecules, 2020, 53: 631–639

    Article  Google Scholar 

  55. Kim J, Mok MM, Sandoval RW, Woo DJ, Torkelson JM. Macromolecules, 2006, 39: 6152–6160

    Article  Google Scholar 

  56. Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P. Science, 2007, 318: 1294–1296

    Article  Google Scholar 

  57. **e T. Nature, 2010, 464: 267–270

    Article  Google Scholar 

  58. Okabe S, Seno KI, Kanaoka S, Aoshima S, Shibayama M. Macromolecules, 2006, 39: 1592–1597

    Article  Google Scholar 

  59. Qiao S, Wang H. Nano Res, 2018, 11: 5400–5423

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21704016, 21971044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9946_MOESM1_ESM.pdf

Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Han, S., Gu, Y. et al. Facile synthesis of gradient copolymers enabled by droplet-flow photo-controlled reversible deactivation radical polymerization. Sci. China Chem. 64, 844–851 (2021). https://doi.org/10.1007/s11426-020-9946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9946-8

Keywords

Navigation