Log in

Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photochromic diarylethenes have been widely used in many fields. However, their cyclization process must be induced by UV light. In this article, a simple strategy is developed by extending π-conjugation with electron donating groups. The modified dirylethene derivative can photocyclolize under 405-nm light with a good photochromic efficiency. Meanwhile, its absorption and moderate fluorescence can be switched effectively in both directions by visible lights (405 and 520 nm, respectively) in different solutions and in living cells. We believe that this simple method will become a versatile strategy for develo** various dirylethylenes with visible-light photochromism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420: 759–760

    Article  CAS  PubMed  Google Scholar 

  2. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Nature, 2007, 446: 778–781

    Article  CAS  PubMed  Google Scholar 

  3. Andreasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D. J Am Chem Soc, 2011, 133: 11641–11648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Díaz SA, Giordano L, Azcárate JC, Jovin TM, Jares-Erijman EA. J Am Chem Soc, 2013, 135: 3208–3217

    Article  CAS  PubMed  Google Scholar 

  5. Fukaminato T. J Photochem Photobiol C-Photochem Rev, 2011, 12: 177–208

    Article  CAS  Google Scholar 

  6. Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photon Rev, 2009, 3: 180–202

    Article  CAS  Google Scholar 

  7. Raymo FM. Phys Chem Chem Phys, 2013, 15: 14840–14850

    Article  CAS  PubMed  Google Scholar 

  8. Fürstenberg A, Heilemann M. Phys Chem Chem Phys, 2013, 15: 14919–14930

    Article  CAS  PubMed  Google Scholar 

  9. Kwon J, Hwang J, Park J, Han GR, Han KY, Kim SK. Sci Rep, 2016, 5: 17804

    Article  CAS  Google Scholar 

  10. Wang S, Wang F, Li C, Li T, Cao D, Ma X. Sci China Chem, 2018, 61: 1301–1306

    Article  CAS  Google Scholar 

  11. Orgiu E, Crivillers N, Herder M, Grubert L, Pätzel M, Frisch J, Pavlica E, Duong DT, Bratina G, Salleo A, Koch N, Hecht S, Samorì P. Nat Chem, 2012, 4: 675–679

    Article  CAS  PubMed  Google Scholar 

  12. Gemayel ME, Börjesson K, Herder M, Duong DT, Hutchison JA, Ruzié C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samorì P. Nat Commun, 2015, 6: 6330

    Article  CAS  PubMed  Google Scholar 

  13. Pang SC, Hyun H, Lee S, Jang D, Lee MJ, Kang SH, Ahn KH. Chem Commun, 2012, 48: 3745

    Article  CAS  Google Scholar 

  14. Bléger D, Hecht S. Angew Chem Int Ed, 2015, 54: 11338–11349

    Article  CAS  Google Scholar 

  15. Jukes RTF, Adamo V, Hartl F, Belser P, De Cola L. Inorg Chem, 2004, 43: 2779–2792

    Article  CAS  PubMed  Google Scholar 

  16. Yam VWW, Ko CC, Zhu N. J Am Chem Soc, 2004, 126: 12734–12735

    Article  CAS  PubMed  Google Scholar 

  17. Tan W, Zhang Q, Zhang J, Tian H. Org Lett, 2009, 11: 161–164

    Article  CAS  PubMed  Google Scholar 

  18. Fredrich S, Göstl R, Herder M, Grubert L, Hecht S. Angew Chem Int Ed, 2016, 55: 1208–1212

    Article  CAS  Google Scholar 

  19. Zhang Z, Zhang J, Wu B, Li X, Chen Y, Huang J, Zhu L, Tian H. Adv Opt Mater, 2018, 6: 1700847

    Article  CAS  Google Scholar 

  20. Carling CJ, Boyer JC, Branda NR. J Am Chem Soc, 2009, 131: 10838–10839

    Article  CAS  PubMed  Google Scholar 

  21. Boyer JC, Carling CJ, Gates BD, Branda NR. J Am Chem Soc, 2010, 132: 15766–15772

    Article  CAS  PubMed  Google Scholar 

  22. Zheng K, Han S, Zeng X, Wu Y, Song S, Zhang H, Liu X. Adv Mater, 2018, 30: 1801726

    Article  CAS  Google Scholar 

  23. Mori K, Ishibashi Y, Matsuda H, Ito S, Nagasawa Y, Nakagawa H, Uchida K, Yokojima S, Nakamura S, Irie M, Miyasaka H. J Am Chem Soc, 2011, 133: 2621–2625

    Article  CAS  PubMed  Google Scholar 

  24. Tsivgoulis GM, Lehn JM. Adv Mater, 1997, 9: 627–630

    Article  CAS  Google Scholar 

  25. Thomas Bens A, Frewert D, Kodatis K, Kryschi C, Martin HD, Trommsdorff HP. Eur J Org Chem, 1998, 1998: 2333–2338

    Article  Google Scholar 

  26. Osuka A, Fujikane D, Shinmori H, Kobatake S, Irie M. J Org Chem, 2001, 66: 3913–3923

    Article  CAS  PubMed  Google Scholar 

  27. Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M. J Am Chem Soc, 2014, 136: 17145–17154

    Article  CAS  PubMed  Google Scholar 

  28. Chen S, Chen LJ, Yang HB, Tian H, Zhu W. J Am Chem Soc, 2012, 134: 13596–13599

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Guo Z, Zhu S, Shi W, Zhu W. ACS Appl Mater Interfaces, 2013, 5: 5623–5629

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Chen S, Yang Y, Zhang Q, **e Y, Tian H, Zhu W. Chem Commun, 2012, 48: 528–530

    Article  CAS  Google Scholar 

  31. Wu Y, **e Y, Zhang Q, Tian H, Zhu W, Li ADQ. Angew Chem Int Ed, 2014, 53: 2090–2094

    Article  CAS  Google Scholar 

  32. Jeong YC, Gao C, Lee IS, Yang SI, Ahn KH. Tetrahedron Lett, 2009, 50: 5288–5290

    Article  CAS  Google Scholar 

  33. Jeong YC, Yang SI, Kim E, Ahn KH. Tetrahedron, 2006, 62: 5855–5861

    Article  CAS  Google Scholar 

  34. Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Nat Protoc, 2013, 8: 1535–1550

    Article  CAS  PubMed  Google Scholar 

  35. Velapoldi RA, Tønnesen HH. J Fluoresc, 2004, 14: 465–472

    Article  CAS  PubMed  Google Scholar 

  36. Zhu W, Yang Y, Métivier R, Zhang Q, Guillot R, **e Y, Tian H, Nakatani K. Angew Chem Int Ed, 2011, 50: 10986–10990

    Article  CAS  Google Scholar 

  37. Li W, Jiao C, Li X, **e Y, Nakatani K, Tian H, Zhu W. Angew Chem Int Ed, 2014, 53: 4603–4607

    Article  CAS  Google Scholar 

  38. Wu NMW, Ng M, Lam WH, Wong HL, Yam VWW. J Am Chem Soc, 2017, 139: 15142–15150

    Article  CAS  PubMed  Google Scholar 

  39. Hatchard CG, Parker CA. Proc R Soc A-Math Phys Eng Sci, 1956, 235: 518–536

    Article  CAS  Google Scholar 

  40. Montalti M, Credi A, Prodi L, Gandolfi M T. Handbook of Photochemistry. Chapter 12, Chemical Actionmetry. Boca Raton: CRC Press, 2006. 601–616

    Google Scholar 

  41. Cui X, Zhao J, Zhou Y, Ma J, Zhao Y. J Am Chem Soc, 2014, 136: 9256–9259

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Li W, Li X, Zhu WH. J Mater Chem C, 2017, 5: 2717–2722

    Article  CAS  Google Scholar 

  43. Hu F, Cao M, Ma X, Liu SH, Yin J. J Org Chem, 2015, 80: 7830–7835

    Article  CAS  PubMed  Google Scholar 

  44. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams D-Young, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Jr., Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Wallingford CT: Gaussian, Inc., 2016

    Google Scholar 

  45. Matsuda K, Irie M. J Am Chem Soc, 2000, 122: 7195–7201

    Article  CAS  Google Scholar 

  46. Boggio-Pasqua M, Ravaglia M, Bearpark MJ, Garavelli M, Robb MA. J Phys Chem A, 2003, 107: 11139–11152

    Article  CAS  Google Scholar 

  47. Ishibashi Y, Umesato T, Kobatake S, Irie M, Miyasaka H. J Phys Chem C, 2012, 116: 4862–4869

    Article  CAS  Google Scholar 

  48. Gillanders F, Giordano L, Díaz SA, Jovin TM, Jares-Erijman EA. Photochem Photobiol Sci, 2014, 13: 603

    Article  CAS  PubMed  Google Scholar 

  49. Sumi T, Takagi Y, Yagi A, Morimoto M, Irie M. Chem Commun, 2014, 50: 3928–3930

    Article  CAS  Google Scholar 

  50. Peng J, Zhao J, Ye K, Gao H, Sun J, Lu R. Chem Asian J, 2018, 13: 1719–1724

    Article  CAS  PubMed  Google Scholar 

  51. Xu J, Volfova H, Mulder RJ, Goerigk L, Bryant G, Riedle E, Ritchie C. J Am Chem Soc, 2018, 140: 10482–10487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21877011, 21576038, 21421005), the Fundamental Research Funds for the Central Universities of China (DUT16TD21), Science Program of Dalian City (2014J11JH133, 2015J12JH207) and the Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengling Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Song, F., Lu, M. et al. Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups. Sci. China Chem. 62, 451–459 (2019). https://doi.org/10.1007/s11426-018-9381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9381-1

Keywords

Navigation