Log in

Glass transition: from interaction potential changes to the corresponding structural and relaxation responses along the path of reaching the final equilibrium

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Glass transition involves a many-body interaction and relaxation process. The split of relaxation spectrum and the extremely slow dynamics bring into considerations of non-linearity and non-equilibrium. Some of our recent findings in two measurable colloidal systems are reviewed, one with a simple attractive interparticle potential and the other with a competitive (repulsive vs. attractive) inter-particle interaction. With an approach from interaction potential changes to the corresponding structural and relaxation responses, along the path of reaching the final equilibrium, we illustrate some interesting physics in glass formation process. Also, some reviews on the popular glass transition theories are made to remind readers to avoid artifacts and misinterpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan G, Cheng H, Han CC. Polymer, 2017, doi: 10.1016/j.polymer. 2017.02.066

    Google Scholar 

  2. Rice SA. Phys Rev, 1958, 112: 804–811

    Article  CAS  Google Scholar 

  3. Zhao C, Yuan G, Jia D, Han CC. Soft Matter, 2012, 8: 7036–7043

    Article  CAS  Google Scholar 

  4. Zhao C, Yuan G, Han CC. Macromolecules, 2012, 45: 9468–9474

    Article  CAS  Google Scholar 

  5. Luo J, Yuan G, Zhao C, Han CC, Chen J, Liu Y. Soft Matter, 2015, 11: 2494–2503

    Article  CAS  Google Scholar 

  6. Yuan G, Luo J, Han CC, Liu Y. Phys Rev E, 2016, 94: 040601

    Article  Google Scholar 

  7. Verduin H, Dhont JKG. J Colloid Interf Sci, 1995, 172: 425–437

    Article  CAS  Google Scholar 

  8. Miller MA, Frenkel D. J Chem Phys, 2004, 121: 535–545

    Article  CAS  Google Scholar 

  9. Zhao C, Yuan G, Han CC. Soft Matter, 2014, 10: 8905–8912

    Article  CAS  Google Scholar 

  10. Zong Y, Yuan G, Han CC. J Chem Phys, 2016, 145: 014904

    Article  Google Scholar 

  11. Zong Y, Yuan G, Zhao C, Han CC. J Chem Phys, 2013, 138: 184902–184907

    Article  Google Scholar 

  12. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN. J Rheol, 2008, 52: 649–676

    Article  CAS  Google Scholar 

  13. Vogel W. Phys Z, 1921, 22: 645–646

    CAS  Google Scholar 

  14. Fulcher GS. J Am Chem Soc, 1925, 8: 339–355

    CAS  Google Scholar 

  15. Tammann G, Hesse W. Z Anorg Allg Chem, 1926, 156: 245–257

    Article  Google Scholar 

  16. Williams ML, Landel RF, Ferry JD. J Am Chem Soc, 1955, 77: 3701–3707

    Article  CAS  Google Scholar 

  17. Ferry JD. Viscoelastic Properties of Polymers (3rd Edition). New York: John Wiley and Sons, 1980

    Google Scholar 

  18. Gibbs JH, DiMarzio EA. J Chem Phys, 1958, 28: 373–383

    Article  CAS  Google Scholar 

  19. Adam G, Gibbs JH. J Chem Phys, 1965, 43: 139–146

    Article  CAS  Google Scholar 

  20. Kauzmann W. Chem Rev, 1948, 43: 219–256

    Article  CAS  Google Scholar 

  21. Zwanzig R. J Chem Phys, 1960, 33: 1338–1341

    Article  CAS  Google Scholar 

  22. Zwanzig R. Phys Rev, 1961, 124: 983–992

    Article  CAS  Google Scholar 

  23. Mori H. Prog Theor Phys, 1965, 33: 423–455

    Article  Google Scholar 

  24. Götze W. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory. Oxford: Oxford University Press, 2008

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation (DMR-1508249) and the National Natural Science Foundation of China (21474121). The identification of commercial products does not imply endorsement by the National Institute of Standards and Technology nor does it imply that these are the best for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Han, C.C. Glass transition: from interaction potential changes to the corresponding structural and relaxation responses along the path of reaching the final equilibrium. Sci. China Chem. 61, 46–53 (2018). https://doi.org/10.1007/s11426-017-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9144-4

Keywords

Navigation