Log in

Gelation capability of cysteine-modified cyclo(L-Lys-L-Lys)s dominated by Fmoc and Trt protecting groups

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of symmetrical peptidomimetics (3–8) based on cysteine-modified cyclo(L-Lys-L-Lys)s were synthesized, and their gelation capability in organic solvents was dominated by fluorenylmethyloxycarbonyl (Fmoc) and triphenylmethyl (Trt) protecting groups and the exchange of thiol-to-disulfide as well. The peptidomimetics holding Trt (3 and 4) showed no gel performance, while the Fmoc groups promoted 5 and 6 to give rise to thermo-reversible organogels in a number of organic solvents. The self-assembled fibrillar networks were distinctly evidenced in the organogels by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations. Fourier transform infrared spectroscopy (FT-IR) and fluorescence analyses revealed that the hydrogen bonding and π-π stacking play as major driving forces for the self-assembly of these organogelators. A β-turn secondary structure was deduced for the organogel of 6 by virtue of X-ray diffraction, FT-IR and circular dichroism (CD) measurements, and an interdigitated bilayer structure was also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanabusa K, Suzuki M. Development of low-molecular-weight gelators and polymer-based gelators. Polym J, 2014, 46: 776–782

    Article  CAS  Google Scholar 

  2. Buerkle LE, Rowan SJ. Supramolecular gels formed from multicomponent low molecular weight species. Chem Soc Rev, 2012, 41: 6089–6103

    Article  CAS  Google Scholar 

  3. Adams DJ. Dipeptide and tripeptide conjugates as low-molecularweight hydrogelators. Macrom Biosci, 2011, 11: 160–173

    Article  CAS  Google Scholar 

  4. **e ZG, Zhang AY, Ye L, Feng ZG. Organo- and hydrogels derived from cyclo(L-Tyr-L-Lys) and its e-amino derivatives. Soft Matter, 2009, 5: 1747–1482

    Article  CAS  Google Scholar 

  5. Kar T, Debnath S, Das D, Shome A, Das PK. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal. Langmuir, 2009, 25: 8639–8648

    Article  CAS  Google Scholar 

  6. Dasgupta A, Mondal JH, Das D. Peptide hydrogels. RSC Adv, 2013, 3: 9117–9149

    Article  CAS  Google Scholar 

  7. Zhang SG, Marini DM, Hwang W, Santoso S. Design of nano-structured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol, 2002, 6: 865–871

    Article  Google Scholar 

  8. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang SG. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci USA, 2009, 106: 4623–4628

    Article  Google Scholar 

  9. Zhang YL, Yang B, Xu LX, Zhang XY, Tao L, Wei Y. Self-healing hydrogels based on dynamic chemistry and their biomedical applications. Acta Chim Sinica, 2013, 71: 485–492

    Article  CAS  Google Scholar 

  10. Chen J, Wu W, Mc Neil AJ. Detecting a peroxide-based explosive via molecular gelation. Chem Commun, 2012, 48: 7310–7312

    Article  CAS  Google Scholar 

  11. Frederix PW, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, Hunt NT, Ulijn RV, Tuttle T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem, 2015, 7: 30–37

    Article  CAS  Google Scholar 

  12. Gazit E. Molecular self-assembly: searching sequence space. Nat Chem, 2015, 7: 14–15

    Article  CAS  Google Scholar 

  13. Cheng G, Castelletto V, Moulton CM, Newby GE, Hamley IW. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy. Langmuir, 2010, 26: 4990–4998

    Article  CAS  Google Scholar 

  14. Manchineella S, Govindaraju T. Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC Adv, 2012, 2: 5539–5542

    Article  CAS  Google Scholar 

  15. Mash EA. Crystal engineering with 1,4-piperazine-2,5-diones. Cryst Eng Comm, 2014, 16: 8620–8637

    Article  CAS  Google Scholar 

  16. Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev, 2012, 112: 3641–3716

    Article  CAS  Google Scholar 

  17. Hanabusa K, Matsumoto M, Kimura M, Kakehi A, Shirai H. Low molecular weight gelators for organic fluids: gelation using a family of cyclo(dipeptide)s. J Colloid Interf Sci, 2000, 224: 231–244

    Article  CAS  Google Scholar 

  18. Delatouche R, Durini M, Civera M, Belvisi L, Piarulli U. Foldamers of bifunctional diketopiperazines displaying a ß-bend ribbon structure. Tetrahedron Lett, 2010, 51: 4278–4280

    Article  CAS  Google Scholar 

  19. Hoshizawa H, Minemura Y, Yoshikawa K, Suzuki M, Hanabusa K. Thixotropic hydrogelators based on a cyclo(dipeptide) derivative. Langmuir, 2013, 29: 14666–14673

    Article  CAS  Google Scholar 

  20. Sasaki Y, Akustu Y, Matsui M, Suzuki K, Sakurada S, Sato T, Kisara K. Studies on analgesic olgopeptides. II. Structure-activity relationship among thirty analogs of a cyclic dipeptide, cyclo(Tyr-Arg). Chem Pharm Bull, 1982, 30: 4435–4442

    Article  CAS  Google Scholar 

  21. **e ZG, Zhang AY, Ye L, Wang X, Feng ZG. Shear-assisted hydrogels based on self-assembly of cyclic dipeptide derivatives. J Mater Chem, 2009, 19: 6100–6102

    Article  CAS  Google Scholar 

  22. a)_Majó MA, Bou JJ, Herranz C, Muñoz-Guerra S. Polycondensation of L-lysine diketopiperazine with tartaric acid—evidence on the formation of cyclic oligomers. Macromol Chem Phys, 2006, 207: 615–620

    Article  CAS  Google Scholar 

  23. Zong QY, Geng HM, Zhang AY, Ye L, Wang X, Feng ZG. A study on synthesis and gelation capability of Fmoc and Boc disubstituted cyclo(L-Lys-L-Lys)s. Acta Chim Sinica, 2015, 73: 423–430

    Article  CAS  Google Scholar 

  24. a)_Kaur N, Zhou B, Breitbeil F, Hardy K, Kraft KS, Trantcheva I, Phanstiel O IV. A delineation of diketopiperazine self-assembly processes understanding the molecular events involved in N-(Fumaroyl)- dike-topiperazine of L-lys (FDKP) Interactions. Mol Pharm, 2007, 5: 294–315

    Google Scholar 

  25. Geng HM, Zong QY, Zhang AY, Ye L, Wang X, Feng ZG. Synthesis of cyclo(L-Lys-L-Lys)-based organogelators and their applications for phase-selective gelation and dye adsorption. Chin J Appl Chem, 2015, doi: 10.11944/j.issn.1000-0518.2015.08.140423

    Google Scholar 

  26. Fleming S, Ulijn RV. Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev, 2014, 43: 8150–8177

    Article  CAS  Google Scholar 

  27. Yang ZM, Gu HW, Fu DG, Gao P, Lam GK, Xu B. Enzymatic formation of supramolecular hydrogels. Adv Mater, 2004, 16: 1440–1444

    Article  Google Scholar 

  28. Shao H, Parquette JR. A π-conjugated hydrogel based on an Fmocdipeptide naphthalene diimide semiconductor. Chem Commun, 2010, 46: 4285–4287

    Article  CAS  Google Scholar 

  29. Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV. Fmoc-diphenylalanine self aßsembles to a hydrogel via a novel architecture based π-π interlocked ß-sheets. Adv Mater, 2008, 20: 37–41

    Article  CAS  Google Scholar 

  30. Nguyen MM, Eckes KM, Suggs LJ. Charge and sequence effects on the self-assembly and subsequent hydrogelation of Fmoc-depsipeptides. Soft Matter, 2014, 10: 2693–2702

    Article  CAS  Google Scholar 

  31. **e ZG, Zhang AY, Ye L, Feng ZG. Synthesis and gelation of a series of low-molecular-weight gelators based on fmoc-dipeptide in alcoholic solvents. Acta Chim Sinica, 2008, 23: 2620–2624

    Google Scholar 

  32. Dou X, Li P, Zhang D, Feng CL. C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter, 2012, 8: 3231–3238

    Article  CAS  Google Scholar 

  33. Tang C, Ulijn RV, Saiani A. Effect of glycine substitution on Fmoc–diphenylalanine self-assembly and gelation properties. Langmuir, 2011, 27: 14438–14449

    Article  CAS  Google Scholar 

  34. a)_Xu XD, Chen CS, Lu B, Cheng SX, Zhang XZ, Zhuo RX. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels. J Phys Chem B, 2010, 114: 2365–2372

    Google Scholar 

  35. Schweitzer D, Hausser KH, Haenel MW. Transanular interaction in [2.2] phanes; [2.2] (4,4′) diphenylophane and [2.2] (2,7) fluorenophane. Chem Phys, 1978, 29: 181–185

    Article  CAS  Google Scholar 

  36. a)_Wang HM, Yang CH, Tan M, Wang L, Kong DL, Yang ZM. A structure-gelation ability study in a short peptide-based “Super Hydrogelator” system. Soft Matter, 2011, 7: 3897–3905

    Article  CAS  Google Scholar 

  37. Gosal WS, Clark AH, Pudney PDA, Ross-Murphy SB. Novel amyloid fibrillar networks derived from a globular protein: beta-lactoglobulin. Langmuir, 2002, 18: 7174–7781

    Article  CAS  Google Scholar 

  38. Gosal WS, Clark AH, Pudney PDA, Ross-Murphy SB. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Biomacromolecules, 2004, 5: 2408–2419

    Article  CAS  Google Scholar 

  39. Zhu P, Yan X, Su Y, Yang Y, Li J. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem Eur J, 2010, 16: 3176–3183

    Article  CAS  Google Scholar 

  40. a)_Nalluri SK, Shivarova N, Kanibolotsky AL, Zelzer M, Gupta S, Frederix PW, Skabara PJ, Gleskova H, Ulijn RV. Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene- appended dipeptides. Langmuir, 2014, 30: 12429–12437

    Article  CAS  Google Scholar 

  41. Tang C, Smith AM, Collins RF. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir, 2009, 25: 9447–9453

    Article  CAS  Google Scholar 

  42. Dave N, Troullier A, Mus-Veteau I, Dunach M, Leblanc G, Padros E. Secondary structure components and properties of the melibiose permease from escherichia coli: a fourier transform infrared spectroscopy analysis. Biophys J, 2008, 78: 747–755

    Google Scholar 

  43. Koch O. Advances in the prediction of turn structures in peptides and proteins. Mol Inf, 2012, 31: 624–630

    Article  CAS  Google Scholar 

  44. Gunasekaran K, Gomathi L, Ramakrishnan C, Chandrasekhar J, Balaram P. Conformational interconversions in peptide ß-turns: analysis of turns in proteins and computationnal estimates of barriers. J Mol Biol, 1998, 284: 1505–1516

    Article  CAS  Google Scholar 

  45. Tena-Solsona M, Miravet JF, Escuder B. Tetrapeptidic molecular hydrogels: self-aßsembly and co-aggregation with amyloid fragment Aß1-40. Chem Eur J, 2014, 20: 1023–1031

    Article  CAS  Google Scholar 

  46. John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Self-assembly of a sugar-based gelator in water: its remarkable diversity in gelation ability and aggregate structure. Langmuir, 2001, 17: 7229–7232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengguo Feng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Zong, Q., You, J. et al. Gelation capability of cysteine-modified cyclo(L-Lys-L-Lys)s dominated by Fmoc and Trt protecting groups. Sci. China Chem. 59, 293–302 (2016). https://doi.org/10.1007/s11426-015-5477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5477-8

Keywords

Navigation