Log in

Geometry of holomorphic invariant strongly pseudoconvex complex Finsler metrics on the classical domains

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a class of holomorphic invariant metrics is introduced on the irreducible classical domains of types I–IV, which are strongly pseudoconvex complex Finsler metrics in the strict sense of Abate and Patrizio (1994). These metrics are of particular interest in several complex variables since they are holomorphic invariant complex Finsler metrics found so far in literature which enjoy good regularity as well as strong pseudoconvexity and can be explicitly expressed so as to admit differential geometry studies. They are, however, not necessarily Hermitian quadratic as the Bergman metrics. These metrics are explicitly constructed via deformation of the corresponding Bergman metric on the irreducible classical domains of types I–IV, respectively, and they are all proved to be complete Kähler-Berwald metrics. They enjoy very similar curvature properties as those of the Bergman metric on the irreducible classical domains, i.e., their holomorphic sectional curvatures are bounded between two negative constants and their holomorphic bisectional curvatures are always nonpositive and bounded below by negative constants, respectively. From the viewpoint of complex analysis, these metrics are analogues of Bergman metrics in complex Finsler geometry which do not necessarily have Hermitian quadratic restrictions in the sense of Chern (1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. Abate M, Aikou T, Patrizio G. Preface for “Complex Finsler geometry”. In: Finsler Geometry. Contemporary Mathematics, vol. 196. Providence: Amer Math Soc, 1996, 97–100

    Book  Google Scholar 

  2. Abate M, Patrizio G. Finsler Metrics—A Global Approach with Applications to Geometric Function Theory. Lecture Notes in Mathematics, vol. 1591. Berlin-Heidelberg: Springer-Verlag, 1994

    Book  Google Scholar 

  3. Aikou T. On complex Finsler manifolds. Rep Fac Sci Kagoshima Univ Math Phys Chem, 1991, 24: 9–25

    MathSciNet  Google Scholar 

  4. Aikou T. Complex manifolds modeled on a complex Minkowski space. J Math Kyoto Univ, 1995, 35: 85–103

    MathSciNet  Google Scholar 

  5. Bao D, Chern S-S, Shen Z. An Introduction to Riemann Finsler Geometry. New York: Springer, 2000

    Book  Google Scholar 

  6. Cartan E. Sur une classe remarquable d’espaces de Riemann. Bull Soc Math France, 1926, 54: 214–264

    Article  MathSciNet  Google Scholar 

  7. Chen B, Shen Y. Kähler Finsler metrics are actually strongly Kähler. Chin Ann Math Ser B, 2009, 30: 173–178

    Article  Google Scholar 

  8. Chern S-S. Finsler geometry is just Riemannian geometry without the quadratic restriction. Notices Amer Math Soc, 1996, 43: 959–963

    MathSciNet  Google Scholar 

  9. Dineen S. The Schwarz Lemma. Oxford Mathematical Monographs. New York: Oxford Univ Press, 1989

    Google Scholar 

  10. Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. Pure and Applied Mathematics, vol. 80. New York: Academic Press, 1978

    Google Scholar 

  11. Hua L-K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Translations of Mathematical Monographs, vol. 6. Providence: Amer Math Soc, 1963

    Book  Google Scholar 

  12. Klingen H. Diskontinuierliche Gruppen in symmetrischen Räumen. I. Math Ann, 1955, 129: 345–369

    Article  Google Scholar 

  13. Klingen H. Über die analytischen Abbildungen verallgemeinerter Einheitskreise aufsich. Math Ann, 1956, 132: 134–144

    Article  MathSciNet  Google Scholar 

  14. Kobayashi S. Hyperbolic Manifolds and Holomorphic Map**s. Pure and Applied Mathematics, vol. 2. New York: Dekker, 1970

    Google Scholar 

  15. Kobayashi S. Intrinsic distances, measures and geometric function theory. Bull Amer Math Soc (NS), 1976, 82: 357–416

    Article  MathSciNet  Google Scholar 

  16. Lempert L. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull Soc Math France, 1981, 109: 427–474

    Article  MathSciNet  Google Scholar 

  17. Look K-H. Unitary geometry in the theory of functions of several complex variables (in Chinese). Adv Math (China), 1956, 2: 567–662

    MathSciNet  Google Scholar 

  18. Look K-H. Schwarz lemma and analytic invariants. Sci Sinica, 1958, 7: 453–504

    MathSciNet  Google Scholar 

  19. Lu Q K. Classical Manifolds and Classical Domains (in Chinese). Bei**g: Kexue Chubanshe (Science Press), 2011

    Google Scholar 

  20. Siegel C L. Symplectic geometry. Amer J Math, 1943, 65: 1–86

    Article  MathSciNet  Google Scholar 

  21. Sun L L, Zhong C P. Characterizations of complex Finsler connections and weakly complex Berwald metrics. Differential Geom Appl, 2013, 31: 648–671

    Article  MathSciNet  Google Scholar 

  22. Suzuki M. The intrinsic metrics on the circular domains in ℂn. Pacific J Math, 1984, 112: 249–256

    Article  MathSciNet  Google Scholar 

  23. Wong P M, Zhong C P. On weighted complex Randers metrics. Osaka J Math, 2011, 48: 589–612

    MathSciNet  Google Scholar 

  24. **a H, Zhong C. On strongly convex weakly Kähler-Finsler metrics of constant flag curvature. J Math Anal Appl, 2016, 443: 891–912

    Article  MathSciNet  Google Scholar 

  25. **a H, Zhong C. On a class of smooth complex Finsler metrics. Results Math, 2017, 71: 657–686

    Article  MathSciNet  Google Scholar 

  26. **a Q, Zhang X. On the Steinness of strongly convex Kähler Finsler manifolds. Math Z, 2021, 299: 1037–1069

    Article  MathSciNet  Google Scholar 

  27. Yin W P. Cartan Domain to Hua Domain (in Chinese). Bei**g: Captial Normal University Press, 2003

    Google Scholar 

  28. Zhong C P. On real and complex Berwald connections associated to strongly convex weakly Kähler-Finsler metric. Differential Geom Appl, 2011, 29: 388–408

    Article  MathSciNet  Google Scholar 

  29. Zhong C P. On unitary invariant strongly pseudoconvex complex Finsler metrics. Differential Geom Appl, 2015, 40: 159–186

    Article  MathSciNet  Google Scholar 

  30. Zhong C P. De Rham decomposition theorem for strongly convex Kähler-Berwald manifolds. Results Math, 2023, 78: 25

    Article  Google Scholar 

Download references

Acknowledgements

The second author was supported by National Natural Science Foundation of China (Grant Nos. 12071386 and 11671330). The authors are very grateful to the referees for their careful reading of the manuscript and very helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun** Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, X., Zhong, C. Geometry of holomorphic invariant strongly pseudoconvex complex Finsler metrics on the classical domains. Sci. China Math. 67, 1827–1864 (2024). https://doi.org/10.1007/s11425-023-2135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-023-2135-y

Keywords

MSC(2020)

Navigation