Log in

Extended finite element methods for optimal control problems governed by Poisson equation in non-convex domains

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper analyzes two eXtended finite element methods (XFEMs) for linear quadratic optimal control problems governed by Poisson equation in non-convex domains. We follow the variational discretization concept to discretize the continuous problems, and apply an XFEM with a cut-off function and a classic XFEM with a fixed enrichment area to discretize the state and co-state equations. Optimal error estimates are derived for the state, co-state and control. Numerical results confirm our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel T, Pfefferer J, Rösch A. Finite element error estimates for Neumann boundary control problems on graded meshes. Comput Optim Appl, 2012, 52: 3–28

    Article  MathSciNet  MATH  Google Scholar 

  2. Apel T, Rösch A, Winkler G. Optimal control in non-convex domains: A priori discretization error estimates. Calcolo, 2007, 44: 137–158

    Article  MathSciNet  MATH  Google Scholar 

  3. Apel T, Sändig A, Whiteman J. Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math Method Appl Sci, 1996, 19: 63–C85

    Article  MathSciNet  MATH  Google Scholar 

  4. Apel T, Winkler G. Optimal control under reduced regularity. Appl Numer Math, 2009, 59: 2050–2064

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška I, Banerjee U, Kergrene K. Strongly stable generalized finite element method: Application to interface problems. Comput Methods Appl Mech Engrg, 2017, 327: 58–92

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška I, Kellogg R B, Pitkäranta J. Direct and inverse error estimates for finite elements with mesh refinements. Numer Math, 1979, 33: 447–471

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuška I, Lipton R. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. SIAM J Multiscale Model Sim, 2010, 9: 373–406

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška I, Melenk J M. The partition of unity method. Int J Numer Meth Eng, 1997, 40: 727–758

    Article  MathSciNet  MATH  Google Scholar 

  9. Babuška I, Rosenzweig M B. A finite element scheme for domains with corners. Numer Math, 1972, 20: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  10. Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39: 113–132

    Article  MathSciNet  MATH  Google Scholar 

  11. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng, 1999, 45: 601–620

    Article  MATH  Google Scholar 

  12. Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Model Simul Mater SC, 2009, 17: 043001

    Article  Google Scholar 

  13. Benedix O, Vexler B. A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput Optim Appl, 2009, 44: 3–25

    Article  MathSciNet  MATH  Google Scholar 

  14. Blum H, Dobrowolski M. On finite element methods for elliptic equations on domains with corners. Computing, 1982, 28: 53–63

    Article  MathSciNet  MATH  Google Scholar 

  15. Bordas S, Rabczuk T, Hung N X, et al. Strain smoothing in fem and XFEM. Comput Struct, 2010, 88: 1419–1443

    Article  Google Scholar 

  16. Casas E. Control of an elliptic problem with pointwise state constraints. SIAM J Control Optim, 1986, 24: 1309–1318

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet P Jr, He J W. The singular complement method for 2d scalar problems. CR Math, 2003, 336: 353–358

    MathSciNet  MATH  Google Scholar 

  18. Falk R S. Approximation of a class of optimal control problems with order of convergence estimates. J Math Anal Appl, 1973, 44: 28–47

    Article  MathSciNet  MATH  Google Scholar 

  19. Gong W, Yan N N. Adaptive finite element method for elliptic optimal control problems: Convergence and optimality. Numer Math, 2017, 135: 1121–1170

    Article  MathSciNet  MATH  Google Scholar 

  20. Grisvard P. Elliptic Problems in Nonsmooth Domains. Philadelphia: SIAM, 1985

    MATH  Google Scholar 

  21. Hintermuller M, Hoppe R H W. Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J Control Optim, 2010, 48: 5468–5487

    Article  MathSciNet  MATH  Google Scholar 

  22. Hinze M. A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput Optim Appl, 2005, 30: 45–61

    Article  MathSciNet  MATH  Google Scholar 

  23. Hinze M, Vierling M. The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems: Implementation, convergence and globalization. Optim Method Softw, 2012, 27: 933–950

    Article  MathSciNet  MATH  Google Scholar 

  24. Kergrene K, Babuška I, Banerjee U. Stable generalized finite element method and associated iterative schemes: Application to interface problems. Comput Methods Appl Mech Engrg, 2016, 305: 1–36

    Article  MathSciNet  MATH  Google Scholar 

  25. Li R, Liu W B, Ma H P, et al. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321–1349

    Article  MathSciNet  MATH  Google Scholar 

  26. Natarajan S, Mahapatra D R, Bordas S. Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Meth Eng, 2010, 83: 269–294

    Article  MathSciNet  MATH  Google Scholar 

  27. Nicaise S, Renard Y, Chahine E. Optimal convergence analysis for the extended finite element method. Int J Numer Meth Eng, 2011, 86: 528–C548

    Article  MathSciNet  MATH  Google Scholar 

  28. Persson P O, Strang G. A simple mesh generator in MATLAB. SIAM Review, 2004, 46: 329–345

    Article  MathSciNet  MATH  Google Scholar 

  29. Rösch A, Siebert K G, Steinig S. Reliable a posteriori error estimation for state-constrained optimal control. Comput Optim Appl, 2017, 68: 121–162

    Article  MathSciNet  MATH  Google Scholar 

  30. Rösch A, Steinig S. A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM Math Model Num, 2012, 46: 1107–1120

    Article  MathSciNet  MATH  Google Scholar 

  31. Rösch A, Wachsmuth D. A-posteriori error estimates for optimal control problems with state and control constraints. Numer Math, 2012, 120: 733–762

    Article  MathSciNet  MATH  Google Scholar 

  32. Schatz A H, Wahlbin L B. Maximum norm estimates in the finite element method on plane polygonal domains. Math Comp, 1979, 33: 465–492

    MathSciNet  MATH  Google Scholar 

  33. Schneider R, Wachsmuth G. A posteriori error estimation for control-constrained, linear-quadratic optimal control problems. SIAM J Numer Anal, 2016, 54: 1169–1192

    Article  MathSciNet  MATH  Google Scholar 

  34. Sevilla D, Wachsmuth D. Polynomial integration on regions defined by a triangle and a conic. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. New York: ACM, 2010, 163–170

    MATH  Google Scholar 

  35. Shen Y X, Lew A. Stability and convergence proofs for a discontinuous-galerkin-based extended finite element method for fracture mechanics. Comput Methods Appl Mech Engrg, 2010, 199: 2360–2382

    Article  MathSciNet  MATH  Google Scholar 

  36. Soghrati S, Geubelle P H. A 3d interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries. Comput Methods Appl Mech Engrg, 2012, 217: 46–57

    Article  MathSciNet  MATH  Google Scholar 

  37. Strang G, Fix G J. An Analysis of the Finite Element Method. Englewood Cliffs: Prentice-Hall, 1973

    MATH  Google Scholar 

  38. Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method. Comput Methods Appl Mech Engrg, 2000, 181: 43–69

    Article  MathSciNet  MATH  Google Scholar 

  39. Strouboulis T, Babuška I, Hidajat R. The generalized finite element method for helmholtz equation: Theory, computation, open problems. Comput Methods Appl Mech Engrg, 2006, 195: 4711–4731

    Article  MathSciNet  MATH  Google Scholar 

  40. Tiba D, Tröltzsch F. Error estimates for the discretization of state constrained convex control problems. Numer Func Anal Optim, 1996, 17: 1005–1028

    Article  MathSciNet  MATH  Google Scholar 

  41. Tröltzsch F. Optimal control of partial differential equations: Theory, methods and applications. SIAM J Control Optim, 2010, 112: 399

    MATH  Google Scholar 

  42. Ventura G. On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Meth Eng, 2006, 66: 761–795

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang C C, Wang T, **e X P. An interface-unfitted finite element method for elliptic interface optimal control problem. Numer Math Theor Meth Appl, 2019, 12: 727–749

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11771312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** **e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yang, C. & **e, X. Extended finite element methods for optimal control problems governed by Poisson equation in non-convex domains. Sci. China Math. 64, 1917–1934 (2021). https://doi.org/10.1007/s11425-018-9487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9487-4

Keywords

MSC(2010)

Navigation