Log in

Parisian ruin over a finite-time horizon

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For a risk process R u (t) = u + ctX(t), t ≥ 0, where u ≥ 0 is the initial capital, c > 0 is the premium rate and X(t), t ≥ 0 is an aggregate claim process, we investigate the probability of the Parisian ruin

$$\mathcal{P}_S (u,T_u ) = \mathbb{P}\left\{ {\mathop {\inf }\limits_{t \in [0,S]} \mathop {\sup }\limits_{s \in [t,t + T_u ]} R_u (s) < 0} \right\}, S,T_u > 0.$$

For X being a general Gaussian process we derive approximations of PS(u, T u ) as u→∞. As a by-product, we obtain the tail asymptotic behaviour of the infimum of a standard Brownian motion with drift over a finite-time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman S M. The supremum of a process with stationary independent and symmetric increments. Stochastic Process Appl, 1986; 23: 281–290

    Article  MathSciNet  MATH  Google Scholar 

  2. Chesney M, Jeanblanc-Picqué M, Yor M. Brownian excursions and Parisian barrier options. Adv Appl Probab, 1997; 29: 165–184

    Article  MathSciNet  MATH  Google Scholar 

  3. Czarna I. Parisian ruin probability with a lower ultimate bankrupt barrier. Scandinavian Actuarial J, 2014, doi:10.1080/03461238.2014.926288

    Google Scholar 

  4. Czarna I, Palmowski Z. Ruin probability with Parisian delay for a spectrally negative Lévy risk process. J Appl Probab, 2011; 48: 984–1002

    Article  MathSciNet  MATH  Google Scholar 

  5. Czarna I, Palmowski Z. Dividend problem with Parisian delay for a spectrally negative Lévy risk process. J Optim Theory Appl, 2014; 161: 239–256

    Article  MathSciNet  MATH  Google Scholar 

  6. Czarna I, Palmowski Z, Światek P. Binomial discrete time ruin probability with Parisian delay. Ar**v:1403.7761, 2014

    MATH  Google Scholar 

  7. Dassios A, Wu S. Parisian ruin with exponential claims. Preprint, 2008, http://stats.lse.ac.uk/angelos/

    Google Scholar 

  8. Dębicki K. Ruin probability for Gaussian integrated processes. Stochastic Process Appl, 2002; 98: 151–174

    Article  MathSciNet  MATH  Google Scholar 

  9. Dębicki K, Hashorva E, Ji L. Extremes of a class of non-homogeneous Gaussian random fields. Ar**v:1405.2952v2, 2014

    MATH  Google Scholar 

  10. Dębicki K, Hashorva E, Ji L. Parisian ruin of self-similar Gaussian risk processes. Ar**v:1405.2958, 2014

    MATH  Google Scholar 

  11. Dębicki K, Hashorva E, Ji L. Gaussian risk models with financial constraints. Scand Actuarial J, 2015; 6: 469–481

    Article  MathSciNet  Google Scholar 

  12. Dębicki K, Kosiński K. On the infimum attained by the reflected fractional Brownian motion. Extremes, 2014; 17: 431–446

    Article  MathSciNet  MATH  Google Scholar 

  13. Dieker A B. Extremes of Gaussian processes over an infinite horizon. Stochastic Process Appl, 2005; 115: 207–248

    Article  MathSciNet  MATH  Google Scholar 

  14. Dieker A B, Yakir B. On asymptotic constants in the theory of Gaussian processes. Bernoulli, 2014; 20: 1600–1619

    Article  MathSciNet  MATH  Google Scholar 

  15. Embrechts P, Hashorva E, Mikosch T. Aggregation of log-linear risks. J Appl Probab, 2014; 51: 203–212

    Article  MathSciNet  MATH  Google Scholar 

  16. Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag, 1997

    Book  MATH  Google Scholar 

  17. Fatalov V R. Asymptotics of the probabilities of large deviations for Gaussian fields. Izv Nats Akad Nauk Armenii Mat, 1992; 27: 59–85

    MathSciNet  MATH  Google Scholar 

  18. Foss S, Korshunov D, Zachary S. An Introduction to Heavy-tailed and Subexponential Distributions, 2nd ed. New York: Springer-Verlag, 2013

    Book  MATH  Google Scholar 

  19. Hashorva E. Exact tail asymptotics in bivariate scale mixture models. Extremes, 2012; 15: 109–128

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashorva E. Extremes of aggregated Dirichlet risks. J Multivariate Anal, 2015; 133: 334–345

    Article  MathSciNet  MATH  Google Scholar 

  21. Hashorva E, Ji L. Approximation of passage times of γ-reflected processes with fBm input. J Appl Probab, 2014; 51: 713–726

    Article  MathSciNet  MATH  Google Scholar 

  22. Hashorva E, Ji L. Piterbarg theorems for chi-processes with trend. Extremes, 2015; 18: 37–64

    Article  MathSciNet  MATH  Google Scholar 

  23. Hashorva E, Ji L, Piterbarg V I. On the supremum of γ-reflected processes with fractional Brownian motion as input. Stochastic Process Appl, 2013; 123: 4111–4127

    Article  MathSciNet  MATH  Google Scholar 

  24. Hüsler J, Piterbarg V I. Extremes of a certain class of Gaussian processes. Stochastic Process Appl, 1999; 83: 257–271

    Article  MathSciNet  MATH  Google Scholar 

  25. Hüsler J, Piterbarg V I. A limit theorem for the time of ruin in a Gaussian ruin problem. Stochastic Process Appl, 2008; 118: 2014–2021

    Article  MathSciNet  MATH  Google Scholar 

  26. Loeffen R, Czarna I, Palmowski Z. Parisian ruin probability for spectrally negative Lévy processes. Bernoulli, 2013; 19: 599–609

    Article  MathSciNet  MATH  Google Scholar 

  27. Michna Z. Self-similar processes in collective risk theory. J Appl Math Stochastic Anal, 1998; 11: 429–448

    Article  MathSciNet  MATH  Google Scholar 

  28. Palmowski Z, Światek P. A note on first passage probabilities of a Lévy process reflected at a general barrier. Ar**v:1403.1025, 2014

    Google Scholar 

  29. Pickands J. Upcrossing probabilities for stationary Gaussian processes. Trans Amer Math Soc, 1969; 145: 51–73

    Article  MathSciNet  MATH  Google Scholar 

  30. Piterbarg V I. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Providence, RI: Amer Math Soc, 1996

    MATH  Google Scholar 

  31. Piterbarg V I. Twenty Lectures About Gaussian Processes. London-New York: Atlantic Financial Press, 2015

    MATH  Google Scholar 

  32. Samorodnitsky G, Taqqu M S. Stable non-Gaussian Random Processes. New York: Stochastic Modeling Chapman & Hall, 1994

    MATH  Google Scholar 

  33. Tan Z, Yang Y. Extremes of Shepp statistics for fractional Brownian motion. Sci China Math, 2015; 58: 1779–1794

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LanPeng Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dębicki, K., Hashorva, E. & Ji, L. Parisian ruin over a finite-time horizon. Sci. China Math. 59, 557–572 (2016). https://doi.org/10.1007/s11425-015-5073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5073-6

Keywords

MSC(2010)

Navigation