Log in

Stability in Inverse Problem of Determining Two Parameters for the Moore-Gibson-Thompson Equation with Memory Terms

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, the authors consider the inverse problem for the Moore-Gibson-Thompson equation with a memory term and variable diffusivity, which introduce a sort of delay in the dynamics, producing nonlocal effects in time. The Hölder stability of simultaneously determining the spatially varying viscosity coefficient and the source term is obtained by means of the key pointwise Carleman estimate for the Moore-Gibson-Thompson equation. For the sake of generality in mathematical tools, the analysis of this paper is discussed within the framework of Riemannian geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bal G, Introduction to inverse problems, Lecture Notes-Department of Applied Physics and Applied Mathematics, Columbia University, New York, 2012.

    Google Scholar 

  2. Jordan P M, An analytic study of the Kuznetsov’s equation: Diffusive solitons, shock formation, and solution bifurcation, Physics Letters A, 2004, 326: 77–84.

    Article  MathSciNet  Google Scholar 

  3. Jordan P M, Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitions, The Journal of the Acoustical Society of America, 2008, 124(4): 2491–2491.

    Article  Google Scholar 

  4. Kaltenbacher B, Mathematics of nonlinear acoustics, Evolution Equations and Control Theory, 2015, 4(4): 447–491.

    Article  MathSciNet  Google Scholar 

  5. Abramov O V, High-Intensity Ultrasonics: Theory and Industrial Applications, CRC Press, Boca Raton, 1999.

    Google Scholar 

  6. Enflo B O and Hedberg C M, Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Applications, Springer, Netherlands, 2006.

    Google Scholar 

  7. Rudenko O V and Soluyan S I, Theoretical Foundations of Nonlinear Acoustics, Plenum Press, New York, 1977, Translated from the Russian by Beyer Robert T, Studies in Soviet Science, Consultants Bureau, New York-London, 1977.

    Book  Google Scholar 

  8. Kaltenbacher B, Lasiecka I, and Pospieszalska M K, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Mathematical Models and Methods in Applied Sciences, 2012, 22(11): 1250035.

    Article  MathSciNet  Google Scholar 

  9. Lizama C and Zamorano S, Controllability results for the Moore-Gibson-Thompson equation arising in nonlinear acoustics, Journal of Differential Equations, 2019, 266(12): 7813–7843.

    Article  MathSciNet  Google Scholar 

  10. Marchand R, McDevitt T, and Triggiani R, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Mathematical Models and Methods in Applied Sciences, 2012, 35(15): 1896–1929.

    Article  MathSciNet  Google Scholar 

  11. Pellicer M and Sola-Morales J, Optimal scalar products in the Moore-Gibson-Thompson equation, Evolution Equations and Control Theory, 2019, 8(1): 203–220.

    Article  MathSciNet  Google Scholar 

  12. Lasiecka I and Wang X J, Moore-Gibson-Thompson equation with memory, part I: Exponential decay of energy, Zeitschrift für Angewandte Mathematik und Physik, 2016, 67: 1–23.

    Article  MathSciNet  Google Scholar 

  13. Kaltenbacher B, Lasiecka I, and Marchand R, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control and Cybernetics, 2011, 40(4): 971–988.

    MathSciNet  Google Scholar 

  14. Bucci F and Lasiecka I, Feedback control of the acoustic pressure in ultrasonic wave propagation, Optimization, 2019, 68(10): 1811–1854.

    Article  MathSciNet  Google Scholar 

  15. Lizama C and Zamorano S, Boundary controllability for the 1D Moore-Gibson-Thompson equation, Meccanica, 2023, 58(6): 1031–1038.

    Article  MathSciNet  Google Scholar 

  16. Lasiecka I and Wang X J, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, Journal of Differential Equations, 2015, 259(12): 7610–7635.

    Article  MathSciNet  Google Scholar 

  17. Bao G and Zhang H, Sensitivity analysis of an inverse problem for the wave equation with caustics, Journal of the American Mathematical Society, 2014, 27(4): 953–981.

    Article  MathSciNet  Google Scholar 

  18. Baudouin L and Puel J P, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 2018, 18(6): 1537–1554.

    Article  Google Scholar 

  19. Beilina L, Cristofol M, Li S, et al., Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations, Inverse Problems, 2017, 34(1): 015001.

    Article  MathSciNet  Google Scholar 

  20. Bellassoued M, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 2017, 33(5): 055009.

    Article  MathSciNet  Google Scholar 

  21. Bellassoued M and Yamamoto M, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, Journal de Mathématiques Pures et Appliquées, 2006, 85(2): 193–224.

    Article  MathSciNet  Google Scholar 

  22. Bukhgeim A L and Klibanov M V, Global uniqueness of class of multidimensional inverse problems, Soviet Mathematics Doklady, 1981, 24: 244–247.

    Google Scholar 

  23. Feng Y, Li H X, and Yang H D, Abnormal source identification for parabolic distributed parameter systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(9): 5698–5707.

    Article  Google Scholar 

  24. Isakov V and Sun Z, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 1992, 8(2): 193–206.

    Article  MathSciNet  Google Scholar 

  25. Li B Y, Bo W, and Hu X M, Identifiability and solvability in inverse linear quadratic optimal control problems, Journal of Systems Science & Complexity, 2021, 34(5): 1840–1857.

    Article  MathSciNet  Google Scholar 

  26. Stefanov P and Uhlmann G, Recovery of a source term or a speed with one measurement and applications, Transactions of the American Mathematical Society, 2011, 365(11): 5737–5758.

    Article  MathSciNet  Google Scholar 

  27. Sylvester J and Uhlmann G, A global uniqueness theorem for an inverse boundary value problem, Annals of mathematics, 1987, 125: 153–169.

    Article  MathSciNet  Google Scholar 

  28. Arancibia R, Lecaros A, Mercado A, et al., An inverse problem for Moore-Gibson-Thompson equation arising in high intensity ultrasound, Journal of Inverse and ILL-Posed Problems, 2021, 30(5): 659–675.

    MathSciNet  Google Scholar 

  29. Bai J Y and Chai S G, Exact controllability of wave equations with interior degeneracy and one-sided boundary control, Journal of Systems Science & Complexity, 2023, 36(2): 656–671.

    Article  MathSciNet  Google Scholar 

  30. Bellassoued M and Yamamoto M, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems, Springer-Japan, Tokyo, 2017.

    Book  Google Scholar 

  31. Fu S R and Yao P F, Stability in inverse problem of an elastic plate with a curved middle surface, Inverse Problems, 2023, 39(4): 045003.

    Article  MathSciNet  Google Scholar 

  32. Yamamoto M, Carleman estimates for parabolic equations and applications, Inverse Problems, 2009, 25(12): 123013.

    Article  MathSciNet  Google Scholar 

  33. Liu S T and Triggiani R, An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement, Journal of Inverse and ILL-Posed Problems, 2013, 21(6): 825–869.

    Article  MathSciNet  Google Scholar 

  34. Yao P F, Modeling and Control in Vibrational and Structural Dynamics, A Differential Geometric Approach, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011.

    Book  Google Scholar 

  35. Conti M, Liverani L, and Pata V, On the Moore-Gibson-Thompson equation with memory with nonconvex kernels, Indiana University Mathematics Journal, 2023, 72(1): 1–27.

    Article  MathSciNet  Google Scholar 

  36. Do Carmo M P, Riemannian Geometry, Birkhäuser, Boston, 1992.

    Book  Google Scholar 

  37. Klibanov M V, Li J Z, and Zhang W L, A globally convergent numerical method for a 3D coefficient inverse problem for a wave-like equation, SIAM Journal on Scientific Computing, 2022, 44(5): A3341–A3365.

    Article  MathSciNet  Google Scholar 

  38. Triggiani R and Yao P F, Carleman estimates with no lower-order terms for general Riemann wave equations, Global uniqueness and observability in one shot, Applied Mathematics and Optimization, 2002, 46(2–3): 331–375.

    MathSciNet  Google Scholar 

  39. Carleman T, Sur un problme d’unicitè pur les systémes d’èuations aux dérivées partiellesà deux variables indépendantes, Ark. Mat. Astr. Fys., 1939, 26(17): 1–9.

    MathSciNet  Google Scholar 

  40. Klibanov M V and Timonov V, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004.

    Book  Google Scholar 

  41. Buhan M D and Osses A, Logarithmic stability in determination of a 3D viscoelastic coefficient and a numerical example, Inverse Problems, 2010, 26(9): 95006–95043.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Feng Zhang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported by the National Key R&D Program of China under Grant No. 2018YFA0703800, and the National Science Foundation of China under Grant No. T2293770.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Chen, L. & Zhang, JF. Stability in Inverse Problem of Determining Two Parameters for the Moore-Gibson-Thompson Equation with Memory Terms. J Syst Sci Complex (2024). https://doi.org/10.1007/s11424-024-3565-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11424-024-3565-6

Keywords

Navigation