Log in

Consumption of lycopene-rich tomatoes improved glucose homeostasis in rats via an increase in leptin levels

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The lycopene content of tomatoes is important because of its effects on vital physiological functions such as improvement of glucose tolerance and non-alcoholic fatty liver disease. To investigate the influence of the lycopene content of tomatoes on glucose tolerance and hepatic lipid content, homogenates of lycopene-rich (LR) or lycopene-free negative control (NC) tomato varieties were administrated to normal rats for 4 weeks. At the end of the experiment, an oral glucose tolerance test (OGTT) was performed. Rats were fed once and then dissected. According to the OGTT results, plasma glucose levels in the LR group were 10% and 9% lower at 15 min and 30 min, respectively, than those in the NC group, whereas plasma insulin levels did not differ between the groups at either time point. Upon dissection, plasma leptin levels in the LR group were higher than those in the NC group, while plasma adiponectin levels did not differ between groups. With the exception of retinol palmitate, no carotenoids were detected in the liver by HPLC analysis. Hepatic retinol palmitate levels and hepatic triacyl glyceride levels did not differ between the groups. We concluded that in normal rats, a lycopene-rich tomato variety improved glucose tolerance via an increase in plasma leptin levels that enhanced insulin sensitivity but did not affect carotenoid accumulation or lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Sharma K (2016) Obesity and diabetic kidney disease: role of oxidant stress and redox balance. Antioxid Redox Signal 25(4):208–216. https://doi.org/10.1089/ars.2016.6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruderman NB, Carling D, Prentki M, Cacicedo JM (2013) AMPK, insulin resistance, and the metabolic syndrome. J Clin Investig 123(7):2764–2772. https://doi.org/10.1172/JCI67227

    Article  CAS  PubMed  Google Scholar 

  3. Bahcecioglu IH, Kuzu N, Metin K, Ozercan IH, Ustündag B, Sahin K, Kucuk O (2010) Lycopene prevents development of steatohepatitis in experimental nonalcoholic steatohepatitis model induced by high-fat diet. Vet Med Int. https://doi.org/10.4061/2010/262179

    Article  PubMed  PubMed Central  Google Scholar 

  4. Doh KO, Park JO, Kim YW, Park SY, Jeong JH, Jeon JR, Lee SK, Kim JY (2006) Effect of leptin on insulin resistance of muscle–direct or indirect? Physiol Res 55(4):413–419

    CAS  PubMed  Google Scholar 

  5. Yaspelkis BB, Davis JR, Saberi M, Smith TL, Jazayeri R, Singh M, Fernandez V, Trevino B, Chinookoswong N, Wang J, Shi ZQ, Levin N (2001) Leptin administration improves skeletal muscle insulin responsiveness in diet-induced insulin-resistant rats. Am J Physiol Endocrinol Metab 280(1):E130–E142. https://doi.org/10.1152/ajpendo.2001.280.1.E130

    Article  CAS  PubMed  Google Scholar 

  6. Kandasamy AD, Sung MM, Boisvenue JJ, Barr AJ, Dyck JR (2012) Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice. Nutr Diabetes 2:e45. https://doi.org/10.1038/nutd.2012.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Toshihiro N, Tsuyoshi I, Yukio F, Sayaka M, Eishin N, Hitoshi Y, Masateru O (2007) Physiological functions of solanaceous and tomato steroidal glycosides. J Nat Med 61(1):1–13. https://doi.org/10.1007/s11418-006-0021-y

    Article  CAS  Google Scholar 

  8. Tsitsimpikou C, Tsarouhas K, Kioukia-Fougia N, Skondra C, Fragkiadaki P, Papalexis P, Stamatopoulos P, Kaplanis I, Hayes AW, Tsatsakis A, Rentoukas E (2014) Dietary supplementation with tomato-juice in patients with metabolic syndrome: a suggestion to alleviate detrimental clinical factors. Food Chem Toxicol 74:9–13. https://doi.org/10.1016/j.fct.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  9. Perveen R, Suleria HA, Anjum FM, Butt MS, Pasha I, Ahmad S (2015) Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims: a comprehensive review. Crit Rev Food Sci Nutr 55(7):919–929. https://doi.org/10.1080/10408398.2012.657809

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Lin X, Zhang S, Guo C, Li J, Mi Y, Zhang C (2018) Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging 10(8):2016–2036. https://doi.org/10.18632/aging.101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawata A, Murakami Y, Suzuki S, Fujisawa S (2018) Anti-inflammatory activity of β-carotene, lycopene and tri-n-butylborane, a scavenger of reactive oxygen species. Vivo 32(2):255–264. https://doi.org/10.21873/invivo.11232

    Article  CAS  Google Scholar 

  12. Deplanque X, Muscente-Paque D, Chappuis E (2016) Proprietary tomato extract improves metabolic response to high-fat meal in healthy normal weight subjects. Food Nutr Res 60:32537. https://doi.org/10.3402/fnr.v60.32537

    Article  CAS  PubMed  Google Scholar 

  13. Jiang W, Guo MH, Hai X (2016) Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World J Gastroenterol 22(46):10180–10188. https://doi.org/10.3748/wjg.v22.i46.10180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Unlu NZ, Bohn T, Clinton SK, Schwartz SJ (2005) Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr 135(3):431–436. https://doi.org/10.1093/jn/135.3.431

    Article  CAS  PubMed  Google Scholar 

  15. Gärtner C, Stahl W, Sies H (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 66(1):116–122. https://doi.org/10.1093/ajcn/66.1.116

    Article  PubMed  Google Scholar 

  16. Kamiloglu S, Boyacioglu D, Capanoglu E (2013) The effect of food processing on bioavailability of tomato antioxidants. J Berry Res 3:65–77. https://doi.org/10.3233/JBR-130051

    Article  CAS  Google Scholar 

  17. Hashimoto N, Ito Y, Han KH, Shimada K, Sekikawa M, Top** DL, Bird AR, Noda T, Chiji H, Fukushima M (2006) Potato pulps lowered the serum cholesterol and triglyceride levels in rats. J Nutr Sci Vitaminol 52(6):445–450. https://doi.org/10.3177/jnsv.52.445

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe J, Oki T, Takebayashi J, Takano-Ishikawa Y (2014) Extraction efficiency of hydrophilic and lipophilic antioxidants from lyophilized foods using pressurized liquid extraction and manual extraction. J Food Sci 79(9):C1665–C1671. https://doi.org/10.1111/1750-3841

    Article  CAS  PubMed  Google Scholar 

  19. Oki T, Masuda M, Kobayashi M, Nishiba Y, Furuta S, Suda I, Sato T (2002) Polymeric procyanidins as radical-scavenging components in red-hulled rice. J Agric Food Chem 50(26):7524–7529

    Article  CAS  Google Scholar 

  20. Kuhad A, Sharma S, Chopra K (2008) Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pain 12(5):624–632. https://doi.org/10.1016/j.ejpain.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Ohkawa H, Ohishi O, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  22. Czaplicki S, Ogrodowska D, Zadernowski R, Konopka I (2017) Effect of sea-buckthorn (Hippophaë rhamnoides L.) pulp oil consumption on fatty acids and vitamin A and E accumulation in adipose tissue and liver of rats. Plant Foods Hum Nutr 72(2):198–204. https://doi.org/10.1007/s11130-017-0610-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  Google Scholar 

  24. Opperhuizen AL, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A (2017) Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia 60(7):1333–1343. https://doi.org/10.1007/s00125-017-4262-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barella LF, Miranda RA, Franco CC, Alves VS, Malta A, Ribeiro TA, Gravena C, Mathias PC, de Oliveira JC (2015) Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats. Exp Physiol 100(1):57–68. https://doi.org/10.1113/expphysiol.2014.082982

    Article  CAS  PubMed  Google Scholar 

  26. Boylan MO, Glazebrook PA, Tatalovic M, Wolfe MM (2015) Gastric inhibitory polypeptide immunoneutralization attenuates development of obesity in mice. Am J Physiol Endocrinol Metab 309(12):E1008–E1018. https://doi.org/10.1152/ajpendo.00345.2015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Project of NARO Bio-oriented Technology Research Advancement Institution (the special scheme project on develo** strategy). The authors would also like to thank to Enago (http://www.enago.jp) for the English language review of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Hashimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, N., Tominaga, N., Wakagi, M. et al. Consumption of lycopene-rich tomatoes improved glucose homeostasis in rats via an increase in leptin levels. J Nat Med 74, 252–256 (2020). https://doi.org/10.1007/s11418-019-01341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01341-4

Keywords

Navigation