Log in

Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper presents the proof of several inequalities by using the technique introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First, the author gives a new and simple proof of a lower bound of Berestycki, Nirenberg, and Varadhan concerning the principal eigenvalue of an elliptic operator with bounded measurable coefficients. The rest of the paper is a survey on the proofs of several isoperimetric and Sobolev inequalities using the ABP technique. This includes new proofs of the classical isoperimetric inequality, the Wulff isoperimetric inequality, and the Lions-Pacella isoperimetric inequality in convex cones. For this last inequality, the new proof was recently found by the author, Xavier Ros-Oton, and Joaquim Serra in a work where new Sobolev inequalities with weights came up by studying an open question raised by Haim Brezis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H. and Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22, 1991, 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Nirenberg, L. and Varadhan, S. R. S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47, 1994, 47–92.

    Article  MathSciNet  MATH  Google Scholar 

  3. Besson, G., From isoperimetric inequalities to heat kernels via symmetrisation, Surveys in Differential Geometry, Vol. IX, 27–51, Surv. Differ. Geom., 9, Int. Press, Somerville, MA,2004.

    MATH  Google Scholar 

  4. Brezis, H., Is there failure of the inverse function theorem? Morse theory, minimax theory and their applications to nonlinear differential equations, Proc. Workshop held at the Chinese Acad. of Sciences, Bei**g, 1999, 23–33, New Stud. Adv. Math., 1, Int. Press, Somerville, MA,2003.

    Google Scholar 

  5. Brezis, H. and Lions, P.-L., An estimate related to the strong maximum principle, Boll. Un. Mat. Ital. A, 17(5), 1980, 503–508.

    MathSciNet  MATH  Google Scholar 

  6. Brezis, H. and Vázquez, J. L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10, 1997, 443–469.

    MathSciNet  MATH  Google Scholar 

  7. Cabré, X., On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 48, 1995, 539–570.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Partial differential equations, geometry, and stochastic control (in Catalan), Butl. Soc. Catalana Mat., 15, 2000, 7–27.

    Google Scholar 

  9. Cabré, X., Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations, Discrete Contin. Dyn. Syst., 8, 2002, 331–359.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabré, X., Elliptic PDEs in probability and geometry, symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., 20, 2008, 425–457.

    Article  MATH  Google Scholar 

  11. Cabré, X., Regularity of minimizers of semilinear elliptic problems up to dimension four, Comm. Pure Appl. Math., 63, 2010, 1362–1380.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cabré, X., Cinti, E., Pratelli, A., et al., Quantitative isoperimetric inequalities with homogeneous weights, in preparation.

  13. Cabré, X. and Ros-Oton, X., Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations, 38, 2013, 135–154.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cabré, X. and Ros-Oton, X., Sobolev and isoperimetric inequalities with monomial weights, J. Differential Equations, 255, 2013, 4312–4336.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cabré, X., Ros-Oton, X. and Serra, J., Euclidean balls solve some isoperimetric problems with nonradial weights, C. R. Math. Acad. Sci. Paris, 350, 2012, 945–947.

    Article  MathSciNet  MATH  Google Scholar 

  16. Cabré, X., Ros-Oton, X. and Serra, J., Sharp isoperimetric inequalities via the ABP method, J. Eur. Math. Soc., 18, 2016, 2971–2998.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cabré, X., Sanchón, M. and Spruck, J., A priori estimates for semistable solutions of semilinear elliptic equations, Discrete Contin. Dyn. Syst., Series A, 36, 2016, 601–609.

    MathSciNet  MATH  Google Scholar 

  18. Caffarelli, L. A. and Cabré, X., Fully Nonlinear Elliptic Equations, Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995.

    Book  MATH  Google Scholar 

  19. Chavel, I., Riemannian Geometry: A Modern Introduction, 2nd Revised Edition, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  20. Cordero-Erausquin, C., Nazaret, B. and Villani, C., A mass transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182, 2004, 307–332.

    Article  MathSciNet  MATH  Google Scholar 

  21. Dinghas, A., Über einen geometrischen satz von Wulff für die gleichgewichtsform von kristallen, Zeitschrift für Kristallographie, 105, 1944, 304–314.

    MathSciNet  MATH  Google Scholar 

  22. Druet, O., Isoperimetric inequalities on nonpositively curved spaces, Lecture Notes. http://math.arizona.edu/˜dido/presentations/Druet-Carthage.pdf

  23. Fusco, N., The stability of the isoperimetric inequality, CNA Summer School, Carnegie Mellon University, Pittsburgh, 2013.

    Google Scholar 

  24. Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39, 2002, 355–405.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin-New York, 1983.

    Book  MATH  Google Scholar 

  26. Gromov, M., Isoperimetric inequalities Riemannian manifolds, asymptotic theory of finite-dimensional normed spaces, Lecture Notes Math., 1200, Appendix I, 114–129, Springer-Verlag, Berlin-New York, 1986.

    Google Scholar 

  27. Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, Berlin-New York, 1969.

    Book  MATH  Google Scholar 

  28. Klimov, V. S., On the symmetrization of anisotropic integral functionals, Izv. Vyssh. Uchebn. Zaved. Mat., 99, 1999, 26–32 (in Russian); translation in Russian Math. (Iz. VUZ), 43, 1999, 23–29.

  29. Lions, P.-L. and Pacella, F., Isoperimetric inequality for convex cones, Proc. Amer. Math. Soc., 109, 1990, 477–485.

    Article  MathSciNet  MATH  Google Scholar 

  30. Milman, E. and Rotem, L., Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math., 262, 2014, 867–908.

    Article  MathSciNet  MATH  Google Scholar 

  31. Osserman, R., The isoperimetric inequality, Bull. Amer. Math. Soc., 84 1978, 1182–1238.

    Article  MathSciNet  MATH  Google Scholar 

  32. Serra, J. and Teixidó, M., Isoperimetric inequality in Hadamard manifolds of dimension two via the ABP method, in preparation.

  33. Taylor, J., Existence and structure of solutions to a class of nonelliptic variational problems, Symposia Mathematica, 14, 1974, 499–508.

    MathSciNet  Google Scholar 

  34. Taylor, J., Unique structure of solutions to a class of nonelliptic variational problems, Proc. Symp. Pure Math., A. M. S., 27, 1975, 419–427.

    Article  MathSciNet  Google Scholar 

  35. Trudinger, N. S., Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, 1994, 411–425.

  36. Van Schaftingen, J., Anisotropic symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 2006, 539–565.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wulff, G., Zur frage der geschwindigkeit des wachsturms und der auflösung der kristallflächen, Zeitschrift für Kristallographie, 34, 1901, 449–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Cabré.

Additional information

Dedicated to Haïm Brezis, with great admiration

This work was supported by MINECO grant MTM2014-52402-C3-1-P. The author is part of the Catalan research group 2014 SGR 1083.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabré, X. Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey. Chin. Ann. Math. Ser. B 38, 201–214 (2017). https://doi.org/10.1007/s11401-016-1067-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-016-1067-0

Keywords

2000 MR Subject Classification

Navigation