Log in

Differentiation in theta and gamma activation in weight-shifting learning between people with parkinson’s disease of different anxiety severities

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Anxiety and postural control deficits may be related in people with Parkinson’s disease (PwPD). However, the association between anxiety levels and weight-shifting control remains ambiguous. This study investigated whether 1) weight-shifting control differed between PwPD with and without anxiety, and 2) the learning effect of weight-shifting differed between the two populations. Additionally, we evaluated cortical activities to investigate neural mechanisms underlying weight-shifting control. Twenty-eight PwPD (14 anxiety, 14 nonanxiety) participated in a 5-day weight-shifting study by coupling the bearing weight of their more-affected leg to a sinusoidal target at 0.25 Hz. We tested the weight-shifting control on day 1 (pretest), day 3 (posttest), and day 5 (retention test) with a learning session on day 3. The error and jerk of weight-shifting trajectory and the theta and gamma powers of electroencephalography in prefrontal, frontal, sensorimotor and parietal-occipital areas were measured. At the pretest, the anxiety group showed larger error and smaller jerk of weight-shifting with greater prefrontal theta, frontal gamma, and sensorimotor gamma powers than the nonanxiety group. Anxiety intensity was correlated positively with weight-shifting error and theta power but negatively with weight-shifting jerk. Reduced weight-shifting error with increased theta power after weight-shifting learning was observed in the nonanxiety group. However, the anxiety group showed decreased gamma power after weight-shifting learning without behavior change. Our findings suggest differential weight-shifting control and associated cortical activation between PwPD with and without anxiety. In addition, anxiety would deteriorate weight-shifting control and hinder weight-shifting learning benefits in PwPD, leading to less weight-shifting accuracy and correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Martens Ehgoetz KA, Lefaivre SC, Beck EN, Chow R, Pieruccini-Faria F, Ellard CG, et al. Anxiety provokes balance deficits that are selectively dopa-responsive in Parkinson’s disease. Neuroscience. 2017;340:436–44. https://doi.org/10.1016/j.neuroscience.2016.11.011.

    Article  CAS  Google Scholar 

  2. Wu M, Kim J, Wei F. Facilitating weight shifting during treadmill training improves walking function in humans with spinal cord injury: a randomized controlled pilot study. Am J Phys Med Rehabil. 2018;97(8):585–92. https://doi.org/10.1097/phm.0000000000000927.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beckley D, Panzer V, Remler M, Ilog L, Bloem B. Clinical correlates of motor performance during paced postural tasks in Parkinson’s disease. J Neurol Sci. 1995;132(2):133–8. https://doi.org/10.1016/0022-510x(95)00130-t.

    Article  CAS  PubMed  Google Scholar 

  4. Rutten S, Vriend C, van der Werf YD, Berendse HW, Weintraub D, van den Heuvel OA. The bidirectional longitudinal relationship between insomnia, depression and anxiety in patients with early-stage, medication-naïve Parkinson’s disease. Parkinsonism Relat Disord. 2017;39:31–6. https://doi.org/10.1016/j.parkreldis.2017.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Papagno C, Trojano L. Cognitive and behavioral disorders in Parkinson’s disease: an update. I: cognitive impairments. Neurol Sci. 2018;39(2):215–23. https://doi.org/10.1007/s10072-017-3154-8.

    Article  PubMed  Google Scholar 

  6. Benke T, Bösch S, Andree B. A study of emotional processing in Parkinson’s disease. Brain Cogn. 1998;38(1):36–52. https://doi.org/10.1006/brcg.1998.1013.

    Article  CAS  PubMed  Google Scholar 

  7. Balaban CD, Thayer JF. Neurological bases for balance–anxiety links. J Anxiety Disord. 2001;15(1–2):53–79. https://doi.org/10.1016/s0887-6185(00)00042-6.

    Article  CAS  PubMed  Google Scholar 

  8. Jazaeri SZ, Azad A, Mehdizadeh H, Habibi SA, MandehgaryNajafabadi M, Saberi ZS, et al. The effects of anxiety and external attentional focus on postural control in patients with Parkinson’s disease. PLoS One. 2018;13(2):0192168. https://doi.org/10.1371/journal.pone.0192168.

    Article  CAS  Google Scholar 

  9. Souza CdO, Voos MC, Barbosa AF, Chen J, Francato DCV, Milosevic M, et al. Relationship between posturography, clinical balance and executive function in Parkinson’s disease. J Mot Behav. 2019;51(2):212–21. https://doi.org/10.1080/00222895.2018.1458279.

    Article  PubMed  Google Scholar 

  10. Amir N, Bomyea J. Working memory capacity in generalized social phobia. J Abnorm Psychol. 2011;120(2):504. https://doi.org/10.1037/a0022849.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Foster PS, Drago V, Yung RC, Skidmore FM, Skoblar B, Shenal BV, et al. Anxiety affects working memory only in left hemibody onset Parkinson disease patients. Cogn Behav Neurol. 2010;23(1):14–8. https://doi.org/10.1097/WNN.0b013e3181cc8be9.

    Article  PubMed  Google Scholar 

  12. Chiviacowsky S, Wulf G, Lewthwaite R, Campos T. Motor learning benefits of self-controlled practice in persons with Parkinson’s disease. Gait Posture. 2012;35(4):601–5. https://doi.org/10.1016/j.gaitpost.2011.12.003.

    Article  PubMed  Google Scholar 

  13. Ramenzoni VC, Riley MA, Shockley K, Chiu C-YP. Postural responses to specific types of working memory tasks. Gait Posture. 2007;25(3):368–73. https://doi.org/10.1016/j.gaitpost.2006.04.014.

    Article  PubMed  Google Scholar 

  14. Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci. 2002;15(8):1395–9. https://doi.org/10.1046/j.1460-9568.2002.01975.x.

    Article  PubMed  Google Scholar 

  15. Yang CY, Huang CK. Working-memory evaluation based on EEG signals during n-back tasks. J Integr Neurosci. 2018;17(3–4):695–707. https://doi.org/10.3233/**-180096.

    Article  PubMed  Google Scholar 

  16. Yu SH, Wu RM, Huang CY. Attentional resource associated with visual feedback on a postural dual task in Parkinson’s disease. Neurorehabil Neural Repair. 2020;34(10):891–903. https://doi.org/10.1177/1545968320948071.

    Article  PubMed  Google Scholar 

  17. Faria MH, Simieli L, Rietdyk S, Penedo T, Santinelli FB, Barbieri FA. (A)symmetry during gait initiation in people with Parkinson’s disease: A motor and cortical activity exploratory study. Front Aging Neurosci. 2023;15:1142540. https://doi.org/10.3389/fnagi.2023.1142540.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–4. https://doi.org/10.1136/jnnp.55.3.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubois B, Burn D, Goetz C, Aarsland D, Brown RG, Broe GA, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314–24. https://doi.org/10.1002/mds.21844.

    Article  PubMed  Google Scholar 

  20. Post B, van den Heuvel L, van Prooije T, van Ruissen X, van de Warrenburg B, Nonnekes J. Young onset Parkinson’s Disease: a modern and tailored approach. J Parkinsons Dis. 2020;10(s1):S29–36. https://doi.org/10.3233/jpd-202135.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale: an updated literature review. J Psychosom Res. 2002;52(2):69–77. https://doi.org/10.1016/s0022-3999(01)00296-3.

    Article  PubMed  Google Scholar 

  22. Li X, Hamdy R, Sandborn W, Chi D, Dyer A. Long-term effects of antidepressants on balance, equilibrium, and postural reflexes. Psychiatry Res. 1996;63(2–3):191–6. https://doi.org/10.1016/0165-1781(96)02878-8.

    Article  CAS  PubMed  Google Scholar 

  23. Brown LA, Polych MA, Doan JB. The effect of anxiety on the regulation of upright standing among younger and older adults. Gait Posture. 2006;24(4):397–405. https://doi.org/10.1016/j.gaitpost.2005.04.013.

    Article  PubMed  Google Scholar 

  24. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990;45(6):M192–7. https://doi.org/10.1093/geronj/45.6.m192.

    Article  CAS  PubMed  Google Scholar 

  25. Brauer S, Burns Y, Galley P. Lateral reach: a clinical measure of medio-lateral postural stability. Physiother Res Int. 1999;4(2):81–8. https://doi.org/10.1002/pri.155.

    Article  CAS  PubMed  Google Scholar 

  26. Tantisuwat A, Chamonchant D, Boonyong S. Multi-directional Reach Test: An Investigation of the Limits of Stability of People Aged between 20–79 Years. J Phys Ther Sci. 2014;26(6):877–80. https://doi.org/10.1589/jpts.26.877.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Takahashi T, Ishida K, Yamamoto H, Takata J, Nishinaga M, Doi Y, et al. Modification of the functional reach test: analysis of lateral and anterior functional reach in community-dwelling older people. Arch Gerontol Geriatr. 2006;42(2):167–73. https://doi.org/10.1016/j.archger.2005.06.010.

    Article  PubMed  Google Scholar 

  28. Hogan N. An organizing principle for a class of voluntary movements. J Neurosci. 1984;4(11):2745–54. https://doi.org/10.1523/JNEUROSCI.04-11-02745.1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maetzler W, Mancini M, Liepelt-Scarfone I, Müller K, Becker C, Van Lummel RC, et al. Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS ONE. 2012;7(3):e32240. https://doi.org/10.1371/journal.pone.0032240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang M, Wang J, Cui X, Wang T, Jiang T, Gao F, Cao J. Multidimensional feature optimization based eye blink detection under epileptiform discharges. IEEE Trans Neural Syst Rehabil Eng. 2022;30:905–14. https://doi.org/10.1109/tnsre.2022.3164126.

    Article  PubMed  Google Scholar 

  31. Mennes M, Wouters H, Vanrumste B, Lagae L, Stiers P. Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology. 2010;47(6):1142–50. https://doi.org/10.1111/j.1469-8986.2010.01015.x.

    Article  PubMed  Google Scholar 

  32. Plöchl M, Ossandón JP, König P. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front Hum Neurosci. 2012;6:278. https://doi.org/10.3389/fnhum.2012.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17. https://doi.org/10.14802/jmd.16062.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jollife IT, Cadima J. Principal component analysis: A review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.

    Article  Google Scholar 

  35. Dijkstra BW, Gilat M, Cofré Lizama LE, Mancini M, Bergmans B, Verschueren SMP, Nieuwboer A. Impaired weight-shift amplitude in people with Parkinson’s disease with freezing of gait. J Parkinsons Dis. 2021;11(3):1367–80. https://doi.org/10.3233/jpd-202370.

    Article  CAS  PubMed  Google Scholar 

  36. Yang YR, Lee YY, Cheng SJ, Lin PY, Wang RY. Relationships between gait and dynamic balance in early Parkinson’s disease. Gait Posture. 2008;27(4):611–5. https://doi.org/10.1016/j.gaitpost.2007.08.003.

    Article  CAS  PubMed  Google Scholar 

  37. Maki B, McIlroy W. Influence of arousal and attention on the control of postural sway. J Vestib Res. 1996;6(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wada M, Sunaga N, Nagai M. Anxiety affects the postural sway of the antero-posterior axis in college students. Neurosci lett. 2001;302(2–3):157–9. https://doi.org/10.1016/s0304-3940(01)01662-7.

    Article  CAS  PubMed  Google Scholar 

  39. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7(2):336. https://doi.org/10.1037/1528-3542.7.2.336.

    Article  PubMed  Google Scholar 

  40. Baker K, Rochester L, Nieuwboer A. The effect of cues on gait variability–reducing the attentional cost of walking in people with Parkinson’s disease. Parkinsonism Relat Disord. 2008;14(4):314–20. https://doi.org/10.1016/j.parkreldis.2007.09.008.

    Article  PubMed  Google Scholar 

  41. Blaauwendraat C, Levy Berg A, Gyllensten AL. One-year follow-up of basic body awareness therapy in patients with posttraumatic stress disorder. A small intervention study of effects on movement quality, PTSD symptoms, and movement experiences. Physiother Theory Pract. 2017;33(7):515–26. https://doi.org/10.1080/09593985.2017.1325957.

    Article  PubMed  Google Scholar 

  42. Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72-84. https://doi.org/10.1093/geronj/49.2.m72.

    Article  CAS  PubMed  Google Scholar 

  43. Carpenter MG, Bloem BR. Postural control in Parkinson patients: a proprioceptive problem? Exp Neurol. 2011;227(1):26–30. https://doi.org/10.1016/j.expneurol.2010.11.007.

    Article  PubMed  Google Scholar 

  44. Boonstra TA, Schouten AC, van Vugt JP, Bloem BR, van der Kooij H. Parkinson’s disease patients compensate for balance control asymmetry. J Neurophysiol. 2014;112(12):3227–39. https://doi.org/10.1152/jn.00813.2013.

    Article  CAS  PubMed  Google Scholar 

  45. Sheikh M, Azarpazhooh MR, Hosseini HA. Randomized comparison trial of gait training with and without compelled weight-shift therapy in individuals with chronic stroke. Clin Rehabil. 2015;30(11):1088–96. https://doi.org/10.1177/0269215515611467.

    Article  Google Scholar 

  46. Doyon J. Skill learning. Int Rev Neurobiol. 1997;41:273–94. https://doi.org/10.1016/s0074-7742(08)60356-6.

    Article  CAS  PubMed  Google Scholar 

  47. Morenilla L, Márquez G, Sánchez JA, Bello O, López-Alonso V, Fernández-Lago H, et al. Postural stability and cognitive performance of subjects with Parkinson’s disease during a dual-task in an upright stance. Front Psychol. 2020;11:1256. https://doi.org/10.3389/fpsyg.2020.01256.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Graydon MM, Linkenauger SA, Teachman BA, Proffitt DR. Scared stiff: the influence of anxiety on the perception of action capabilities. Cogn Emot. 2012;26(7):1301–15. https://doi.org/10.1080/02699931.2012.667391.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wulf G, Chiviacowsky S, Lewthwaite R. Altering mindset can enhance motor learning in older adults. Psychol Aging. 2012;27(1):14–21. https://doi.org/10.1037/a0025718.

    Article  PubMed  Google Scholar 

  50. Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield E, Kahana MJ. Theta oscillations in human cortex during a working-memory task: evidence for local generators. J Neurophysiol. 2006;95(3):1630–8. https://doi.org/10.1152/jn.00409.2005.

    Article  CAS  PubMed  Google Scholar 

  51. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29(2–3):169–95. https://doi.org/10.1016/s0165-0173(98)00056-3.

    Article  CAS  PubMed  Google Scholar 

  52. Gebel A, Lehmann T, Granacher U. Balance task difficulty affects postural sway and cortical activity in healthy adolescents. Exp Brain Res. 2020;238(5):1323–33. https://doi.org/10.1007/s00221-020-05810-1.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maurer U, Brem S, Liechti M, Maurizio S, Michels L, Brandeis D. Frontal midline theta reflects individual task performance in a working memory task. Brain Topogr. 2015;28:127–34. https://doi.org/10.1007/s10548-014-0361-y.

    Article  PubMed  Google Scholar 

  54. Schmidt B, Kanis H, Holroyd CB, Miltner WH, Hewig J. Anxious gambling: anxiety is associated with higher frontal midline theta predicting less risky decisions. Psychophysiology. 2018;55(10):e13210. https://doi.org/10.1111/psyp.13210.

    Article  PubMed  Google Scholar 

  55. Rozengurt R, Barnea A, Uchida S, Levy DA. Theta EEG neurofeedback benefits early consolidation of motor sequence learning. Psychophysiology. 2016;53(7):965–73. https://doi.org/10.1111/psyp.12656.

    Article  PubMed  Google Scholar 

  56. Van Der Cruijsen J, Manoochehri M, Jonker ZD, Andrinopoulou E-R, Frens MA, Ribbers GM, et al. Theta but not beta power is positively associated with better explicit motor task learning. Neuroimage. 2021;240:118373. https://doi.org/10.1016/j.neuroimage.2021.118373.

    Article  PubMed  Google Scholar 

  57. Tobias S. Test anxiety: Interference, defective skills, and cognitive capacity. Educ Psychol. 1985;20(3):135–42. https://doi.org/10.1207/s15326985ep2003_3.

    Article  Google Scholar 

  58. Müller MM, Keil A, Gruber T, Elbert T. Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol. 1999;110(11):1913–20. https://doi.org/10.1016/s1388-2457(99)00151-0.

    Article  PubMed  Google Scholar 

  59. Slobounov S, Fukada K, Simon R, Rearick M, Ray W. Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Brain Res Cogn Brain Res. 2000;9(3):287–98. https://doi.org/10.1016/s0926-6410(00)00009-4.

    Article  CAS  PubMed  Google Scholar 

  60. Assem M, Hart MG, Coelho P, Romero-Garcia R, McDonald A, Woodberry E, et al. High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks. Cortex. 2023;159:286–98. https://doi.org/10.1016/j.cortex.2022.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Crowell AL, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Shimamoto S, Lim DA, et al. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain. 2012;135(2):615–30. https://doi.org/10.1093/brain/awr332.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jenkinson N, Kühn AA, Brown P. γ oscillations in the human basal ganglia. Exp Neurol. 2013;245:72–6. https://doi.org/10.1016/j.expneurol.2012.07.005.

    Article  PubMed  Google Scholar 

  63. Heid C, Mouraux A, Treede R-D, Schuh-Hofer S, Rupp A, Baumgärtner U. Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. J Neurophysiol. 2020;123(5):1711–26. https://doi.org/10.1152/jn.00444.2019.

    Article  CAS  PubMed  Google Scholar 

  64. Spooner RK, Wiesman AI, Proskovec AL, Heinrichs-Graham E, Wilson TW. Prefrontal theta modulates sensorimotor gamma networks during the reorienting of attention. Hum Brain Mapp. 2020;41(2):520–9. https://doi.org/10.1002/hbm.24819.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Science and Technology Council, Taiwan (grant no. NSTC 112–2314-B-002–136-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R.M.W. and C.Y.H. Methodology: Y.T.H. and C.Y.H. Formal analysis: Y.T.H. and C.Y.H. Writing-original draft preparation: Y.T.H. and C.Y.H. Writing-review and editing: Y.T.H., R.M.W. and C.Y.H. Funding acquisition: C.Y.H.

Corresponding author

Correspondence to Cheng-Ya Huang.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the Helsinki declaration and approved by the National Taiwan University Hospital Research Ethics Committee.

Consent for publication

Not applicable.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, YT., Wu, RM. & Huang, CY. Differentiation in theta and gamma activation in weight-shifting learning between people with parkinson’s disease of different anxiety severities. GeroScience (2024). https://doi.org/10.1007/s11357-024-01236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01236-7

Keywords

Navigation