Log in

Autonomic dysfunction is associated with the development of arterial stiffness: the Whitehall II cohort

  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

This study aims to examine the association between baseline level and change of autonomic nervous function with subsequent development of arterial stiffness. Autonomic nervous function was assessed in 4901 participants of the Whitehall II occupational cohort by heart rate variability (HRV) indices and resting heart rate (rHR) three times between 1997 and 2009, while arterial stiffness was assessed by carotid-femoral pulse wave velocity (PWV) measured twice between 2007 and 2013. First, individual HRV/rHR levels and annual changes were estimated. Then, we modelled the development of PWV by HRV/rHR using linear mixed effect models. First, we adjusted for sex and ethnicity (model 1), and then for socioeconomic and lifestyle factors, various clinical measurements, and medications (model 2). A decrease in HRV and unchanged rHR was associated with subsequent higher levels of PWV, but the effect of a change in HRV was less pronounced at higher ages. A typical individual aged 65 years with a SDNN level of 30 ms and a 2% annual decrease in SDNN had 1.32 (0.95; 1.69) higher PWV compared to one with the same age and SDNN level but with a 1% annual decrease in SDNN. Further adjustment had no major effect on the results. People who experience a steeper decline in autonomic nervous function have higher levels of arterial stiffness. The association was stronger in younger people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Whitehall II data, protocols and other metadata are available to bona fide researchers for research purposes. Please refer to the Whitehall II data sharing policy at https://www.ucl.ac.uk/epidemiology-health-care/research/epidemiology-and-public-health/research/whitehall-ii/data-sharing.

Abbreviations

CAN:

Cardiovascular autonomic neuropathy

CVD:

Cardiovascular disease

ECG:

Electrocardiogram

HF power:

High-frequency power

HRV:

Heart rate variability

LF power:

Low-frequency power

PWV:

Carotid-femoral pulse wave velocity

rHR:

Resting heart rate

RMSSD:

The root mean square of the sum of the squares of differences between consecutive normal-to-normal R-R intervals

SDNN:

The standard deviation of normal-to-normal R-R intervals

References

  1. Mendis S, Puska P, Norrving B, World Health Organization. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization; 2011.

  2. Ford ES. Trends in predicted 10-year risk of coronary heart disease and cardiovascular disease among US adults from 1999 to 2010. J Am Coll Cardiol. 2013;61(22):2249–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Levi-Marpillat N, Desamericq G, Akakpo S, Affes-Ayadi H, Tropeano A-I, Millasseau S, et al. Crucial importance of using a sliding calliper to measure distance for carotid-femoral pulse wave velocity assessment. J Hypertens. 2013;31(5):940–5.

    Article  CAS  PubMed  Google Scholar 

  4. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27. https://doi.org/10.1016/j.jacc.2009.10.061.

    Article  PubMed  Google Scholar 

  5. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.

    Article  PubMed  Google Scholar 

  6. Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mansour AS, Yannoutsos A, Majahalme N, Agnoletti D, Safar ME, Ouerdane S, et al. Aortic stiffness and cardiovascular risk in type 2 diabetes. J Hypertens. 2013;31(8):1584–92. https://doi.org/10.1097/HJH.0b013e3283613074.

    Article  CAS  PubMed  Google Scholar 

  8. Sethi S, Rivera O, Oliveros R, Chilton R. Aortic stiffness: pathophysiology, clinical implications, and approach to treatment. Integr Blood Press Control. 2014;7:29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheung Y-F. Arterial stiffness in the young: assessment, determinants, and implications. Korean Circ J. 2010;40(4):153–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shirwany NA, Zou MH. Arterial stiffness: a brief review. Acta Pharmacol Sin. 2010;31(10):1267–76. https://doi.org/10.1038/aps.2010.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  12. Bruno RM, Ghiadoni L, Seravalle G, Dell’Oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51. https://doi.org/10.1007/s11517-006-0119-0.

    Article  CAS  PubMed  Google Scholar 

  14. Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen R, et al. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–65. https://doi.org/10.1161/01.CIR.93.5.1043.

  15. Jensen-Urstad K, Reichard P, Jensen-Urstad M. Decreased heart rate variability in patients with type 1 diabetes mellitus is related to arterial wall stiffness. J Intern Med. 1999;245(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  16. Chorepsima S, Eleftheriadou I, Tentolouris A, Moyssakis I, Protogerou A, Kokkinos A, et al. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus. BMC Endocr Disord. 2017;17(1):27. https://doi.org/10.1186/s12902-017-0178-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandra P, Sands RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, et al. Relationship between heart rate variability and pulse wave velocity and their association with patient outcomes in chronic kidney disease. Clin Nephrol. 2014;81(1):9.

    Article  CAS  PubMed  Google Scholar 

  18. Tentolouris N, Liatis S, Moyssakis I, Tsapogas P, Psallas M, Diakoumopoulou E, et al. Aortic distensibility is reduced in subjects with type 2 diabetes and cardiac autonomic neuropathy. Eur J Clin Invest. 2003;33(12):1075–83.

    Article  CAS  PubMed  Google Scholar 

  19. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocrinol. 2011;7(11):682.

    Article  CAS  PubMed  Google Scholar 

  20. Saito I, Hitsumoto S, Maruyama K, Nishida W, Eguchi E, Kato T, et al. Heart rate variability, insulin resistance, and insulin sensitivity in Japanese adults: the Toon Health Study. J Epidemiol. 2015;25(9):583–91. https://doi.org/10.2188/jea.JE20140254.

  21. Wulsin LR, Horn PS, Perry JL, Massaro JM, D’Agostino RB. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J Clin Endocrinol Metab. 2015;100(6):2443–8.

    Article  CAS  PubMed  Google Scholar 

  22. Marmot M, Brunner E. Cohort profile: the Whitehall II study. Int J Epidemio. 2005;34(2):251–6.

    Article  Google Scholar 

  23. Hansen CS, Faerch K, Jorgensen ME, Malik M, Witte DR, Brunner EJ, et al. Heart rate, autonomic function, and future changes in glucose metabolism in individuals without diabetes: the Whitehall II cohort study. Diabetes Care. 2019;42(5):867–74. https://doi.org/10.2337/dc18-1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Roon AM, Snieder H, Lefrandt JD, de Geus EJC, Riese H. Parsimonious correction of heart rate variability for its dependency on heart rate. Hypertension (Dallas, Tex: 1979). 2016;68(5):e63–5. https://doi.org/10.1161/HYPERTENSIONAHA.116.08053.

    Article  CAS  PubMed  Google Scholar 

  25. de Geus EJC, Gianaros PJ, Brindle RC, Jennings JR, Berntson GG. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019;56(2):e13287. https://doi.org/10.1111/psyp.13287.

    Article  PubMed  Google Scholar 

  26. Johansen NB, Vistisen D, Brunner EJ, Tabák AG, Shipley MJ, Wilkinson IB, et al. Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study. PloS one. 2012;7(5):e37165. https://doi.org/10.1371/journal.pone.0037165.

  27. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care. 2000;23(8):1108. https://doi.org/10.2337/diacare.23.8.1108.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006. p. 50. https://apps.who.int/iris/handle/10665/43588.

  29. Singer JD, Willett JB, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. Oxford university press; 2003.

  30. Sacha J. Why should one normalize heart rate variability with respect to average heart rate. Front Physiol. 2013;4:306. https://doi.org/10.3389/fphys.2013.00306.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014;64(6):1334–43. https://doi.org/10.1161/hypertensionaha.114.03782.

    Article  CAS  PubMed  Google Scholar 

  32. Meyer C, Milat F, McGrath BP, Cameron J, Kotsopoulos D, Teede HJ. Vascular dysfunction and autonomic neuropathy in Type 2 diabetes. Diabet Med. 2004;21(7):746–51.

    Article  CAS  PubMed  Google Scholar 

  33. Liatis S, Alexiadou K, Tsiakou A, Makrilakis K, Katsilambros N, Tentolouris N. Cardiac Autonomic function correlates with arterial stiffness in the early stage of type 1 diabetes. Exp Diabetes Res. 2011;2011:957901. https://doi.org/10.1155/2011/957901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Britton A, Shipley M, Malik M, Hnatkova K, Hemingway H, Marmot M. Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study). Am J Cardiol. 2007;100(3):524–7. https://doi.org/10.1016/j.amjcard.2007.03.056.

    Article  PubMed  Google Scholar 

  35. Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet. 2015;6:112. https://doi.org/10.3389/fgene.2015.00112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, et al. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med. 2017;281(5):471–82. https://doi.org/10.1111/joim.12605.

    Article  CAS  PubMed  Google Scholar 

  37. Mangoni AA, Mircoli L, Giannattasio C, Mancia G, Ferrari AU. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension. 1997;30(5):1085–8. https://doi.org/10.1161/01.hyp.30.5.1085.

    Article  CAS  PubMed  Google Scholar 

  38. Mircoli L, Mangoni AA, Giannattasio C, Mancia G, Ferrari AU. Heart rate-dependent stiffening of large arteries in intact and sympathectomized rats. Hypertension. 1999;34(4 Pt 1):598–602. https://doi.org/10.1161/01.hyp.34.4.598.

    Article  CAS  PubMed  Google Scholar 

  39. Giannoglou GD, Chatzizisis YS, Zamboulis C, Parcharidis GE, Mikhailidis DP, Louridas GE. Elevated heart rate and atherosclerosis: an overview of the pathogenetic mechanisms. Int J Cardiol. 2008;126(3):302–12.

    Article  PubMed  Google Scholar 

  40. Park B-J, Lee H-R, Shim J-Y, Lee J-H, Jung D-H, Lee Y-J. Association between resting heart rate and arterial stiffness in Korean adults. Arch Cardiovasc Dis. 2010;103(4):246–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participating women and men in the Whitehall II Study, as well as all Whitehall II research scientists, study and data managers and clinical and administrative staff who make the study possible.

Funding

The UK Medical Research Council (K013351, R024227), British Heart Foundation and the US National Institutes of Health (R01HL36310, R01AG013196) have supported collection of data in the Whitehall II study. JFRS, DRW, AH and LB are employed at Steno Diabetes Center Aarhus, and CSH and DV are employed at Steno Diabetes Center Copenhagen. Both institutions are partly funded by a donation from the Novo Nordisk Foundation. The funders had no role in the design of the study. DRW and JRS are supported by EFSD/Sanofi European Diabetes Research Programme in diabetes associated with cardiovascular disease. AGT was supported by the UK Medical Research Council (S011676), NordForsk (the Nordic Research Programme on Health and Welfare, 75021), and by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund (2021 Thematic Excellence Programme funding scheme, TKP2021-NKTA-47).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: JRS, DRW, AH, MSC, LB, DV and CSH. Contributed the data: DRW and AGT. Planning the statistical analysis: JRS, DRW, AH, LB, MSC and DV. Conducted the statistical analysis: JRS. All authors contributed to, critically revised and approved the final version of the manuscript. JRS is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Jonas R. Schaarup.

Ethics declarations

Ethics approval

The UK NHS Health Research Authority London-Harrow ethics committee approved the study, which was conducted in accordance with the Helsinki Declaration with written informed consent from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.13 MB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaarup, J.R., Christensen, M.S., Hulman, A. et al. Autonomic dysfunction is associated with the development of arterial stiffness: the Whitehall II cohort. GeroScience 45, 2443–2455 (2023). https://doi.org/10.1007/s11357-023-00762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00762-0

Keywords

Navigation