Log in

Effects of metformin, rapamycin, and resveratrol on cellular metabolism of canine primary fibroblast cells isolated from large and small breeds as they age

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Small breed dogs have longer lifespans than their large breed counterparts. Previous work demonstrated that primary fibroblast cells isolated from large breed young and old dogs have a persistent glycolytic metabolic profile compared with cells from small breed dogs. Here, we cultured primary fibroblast cells from small and large, young and old dogs and treated these cells with three commercially available drugs that show lifespan and health span benefits, and have been shown to reduce glycolytic rates: rapamycin (rapa), resveratrol (res) and metformin (met). We then measured aerobic and anaerobic cellular respiration in these cells. We found that rapa and res increased rates of non-glycolytic acidification in small and large breed puppies and basal oxygen consumption rates (OCR) in small and large breed puppies. Rapa increased proton leak and non-mitochondrial respiration in small and large breed puppies. Maximal respiration was significantly altered with rapa treatment but in opposing ways: large breed puppies showed a significant increase in maximal respiration when treated with rapa, and small old dogs demonstrated a significant decrease in maximal respiration when treated with rapa. In opposition to rapa treatments, met significantly decreased basal OCR levels in cells from small and large breed puppies. Our data suggest that rapa treatments may be metabolically beneficial to dogs when started early in life and more beneficial in larger breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data is available in its raw form by contacting the corresponding author. After publication, this dataset will be deposited onto figshare.

Code availability

Code will be available on Dr. William Cipolli’s website or by contacting him directly via email.

References

  1. Anisimov VN. Metformin for cancer and aging prevention: is it a time to make the long story short? Oncotarget. 2015;6(37):39398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle. 2008;7(17):2769–73.

    Article  CAS  PubMed  Google Scholar 

  3. Anisimov VN, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Egormin PA, et al. Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice. Aging (Albany NY). 2010;2(12):945–58.

    Article  CAS  Google Scholar 

  4. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY). 2011;3(2):148–57.

    Article  CAS  Google Scholar 

  5. Argaud D, Roth H, Wiernsperger N, LEVERVE XM. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem. 1993;213(3):1341–8.

    Article  CAS  PubMed  Google Scholar 

  6. Arkad'eva AV, Mamonov AA, Popovich IG, Anisimov VN, Mikhel'son VM, Spivak IM. Metformin slows down ageing processes at the cellular level in SHR mice. Tsitologiia. 2011;53(2):166–74.

    CAS  PubMed  Google Scholar 

  7. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008;3(6):e2264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bauer JH, Goupil S, Garber GB, Helfand SL. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci. 2004;101(35):12980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.

    Google Scholar 

  11. Box GE, Cox DR. An analysis of transformations. J R Stat Soc Ser B Methodol. 1964;26(2):211–43.

    Google Scholar 

  12. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.

    Article  CAS  PubMed  Google Scholar 

  13. Bridges HR, Jones AJ, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 2014;462(3):475–87.

    Article  CAS  PubMed  Google Scholar 

  14. Carlson A, Alderete KS, Grant MKO, Seelig DM, Sharkey LC, Zordoky BNM. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Vet Comp Oncol. 2018;16(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  15. Chiao YA, Kolwicz SC, Basisty N, Gagnidze A, Zhang J, Gu H, et al. Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (Albany NY). 2016;8(2):314–27.

    Article  CAS  Google Scholar 

  16. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci. 2014;111(24):E2501–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta (BBA) Gen Subj. 2016;1860(4):727–45.

    Article  CAS  Google Scholar 

  18. Deeb BJ, Wolf NS. Studying longevity and morbidity in giant and small breeds of dogs. Vet Med. 1994;89(suppl):702–13.

    Google Scholar 

  19. Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, et al. Metformin: multi-faceted protection against cancer. Oncotarget. 2011;2(12):896–917.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56(293):52–64.

    Article  Google Scholar 

  21. Fernández AF, Fraga MF. The effects of the dietary polyphenol resveratrol on human healthy aging and lifespan. Epigenetics. 2011;6(7):870–4.

    Article  PubMed  CAS  Google Scholar 

  22. Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem. 2009;81(16):6868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA. Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell. 2007;6(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  24. Hill BG, Benavides GA, Lancaster JR, Ballinger S, Dell’Italia L, Zhang J, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012;393(12):1485–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ipata PL, Balestri F. Glycogen as a fuel: metabolic interaction between glycogen and ATP catabolism in oxygen-independent muscle contraction. Metabolomics. 2012;8(4):736–41.

    Article  CAS  Google Scholar 

  27. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–20.

    Article  CAS  PubMed  Google Scholar 

  28. Jimenez AG. Physiological underpinnings in life-history trade-offs in man’s most popular selection experiment: the dog. J Comp Physiol B. 2016;186(7):813–27.

    Article  PubMed  Google Scholar 

  29. Jimenez AG, Winward J, Beattie U, Cipolli W. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs. PLoS One. 2018;13(4):e0195832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jimenez AG, Winward JD, Walsh KE, Champagne AM. Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs. J Exp Biol. 2020;223(12):jeb221804.

    Article  PubMed  Google Scholar 

  31. Jones LJ, Gray M, Yue ST, Haugland RP, Singer VL. Sensitive determination of cell number using the CyQUANT® cell proliferation assay. J Immunol Methods. 2001;254(1-2):85–98.

    Article  CAS  PubMed  Google Scholar 

  32. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Sikora A, Zielonka J, et al. Mitochondria-targeted metformins: anti-tumour and redox signaling mechanisms. Interface Focus. 2017;7(2):20160109.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kapahi P, Boulton ME, Kirkwood TB. Positive correlation between mammalian life span and cellular resistance to stress. Free Radic Biol Med. 1999;26(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  34. Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1–26.

    Article  Google Scholar 

  35. Russell Lenth (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans

  36. Lowseth LA, Gillett NA, Gerlach RF, Muggenburg BA. The effects of aging on hematology and serum chemistry values in the beagle dog. Vet Clin Pathol. 1990;19(1):13–9.

    Article  PubMed  Google Scholar 

  37. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.

    Article  PubMed  CAS  Google Scholar 

  38. Michell AR. Longevit of British breeds of dog and its relationships with-sex, size, cardiovascular variables and disease. Vet Rec. 1999;145(22):625–9.

    Article  CAS  PubMed  Google Scholar 

  39. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, De Cabo R, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol Ser A. 2011;66(2):191–201.

    Article  CAS  Google Scholar 

  40. Mizuguchi Y, Hatakeyama H, Sueoka K, Tanaka M, Goto YI. Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming. Mitochondrion. 2017;34:43–8.

    Article  CAS  PubMed  Google Scholar 

  41. Mnjoyan ZH, Fujise K. Profound negative regulatory effects by resveratrol on vascular smooth muscle cells: a role of p53–p21WAF1/CIP1 pathway. Biochem Biophys Res Commun. 2003;311(2):546–52.

    Article  CAS  PubMed  Google Scholar 

  42. Morgan JA, Tatar JF. Calculation of the residual sum of squares for all possible regressions. Technometrics. 1972;14(2):317–25.

    Article  Google Scholar 

  43. Mouchiroud L, Molin L, Dallière N, Solari F. Life span extension by resveratrol, rapamycin, and metformin: The promise of dietary restriction mimetics for an healthy aging. Biofactors. 2010;36(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  44. Nacarelli T, Azar A, Altinok O, Orynbayeva Z, Sell C. Rapamycin increases oxidative metabolism and enhances metabolic flexibility in human cardiac fibroblasts. GeroScience. 2018;40(3):243–56.

    Article  CAS  PubMed Central  Google Scholar 

  45. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S, Adler T, et al. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest. 2013;123(8):3272–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patronek GJ, Waters DJ, Glickman LT. Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol Ser A Biol Med Sci. 1997;52(3):B171–8.

    Article  CAS  Google Scholar 

  47. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8(2):157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  49. Saeki K, Watanabe M, Tsuboi M, Sugano S, Yoshitake R, Tanaka Y, et al. Anti-tumour effect of metformin in canine mammary gland tumour cells. Vet J. 2015;205(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  50. Saha B, Cypro A, Martin GM, Oshima J. Rapamycin decreases DNA damage accumulation and enhances cell growth of WRN-deficient human fibroblasts. Aging Cell. 2014;13(3):573–5.

  51. Salin K, Villasevil EM, Anderson GJ, Auer SK, Selman C, Hartley RC, et al. Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost. Funct Ecol. 2018;32(9):2149–57.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saunier E, Antonio S, Regazzetti A, Auzeil N, Laprévote O, Shay JW, et al. Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci Rep. 2017;7(1):6945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.

    Article  Google Scholar 

  54. Seo-Mayer PW, Thulin G, Zhang L, Alves DS, Ardito T, Kashgarian M, et al. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. Am J Physiol-Renal Physiol. 2011;301(6):F1346–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Urfer SR, Wang M, Yang M, Lund EM, Lefebvre SL. Risk Factors Associated with Lifespan in Pet Dogs Evaluated in Primary Care Veterinary Hospitals. J Am Anim Hosp Assoc. 2017a.

  56. Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DE, et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience. 2017b;39(2):117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, et al. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res. 2007;6(5):1846–54.

    Article  CAS  PubMed  Google Scholar 

  58. Warburg O. On respiratory impairment in cancer cells. Science (New York, NY). 1956;124(3215):269–70.

    Article  CAS  Google Scholar 

  59. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. elife. 2014;3:e02242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82.

    Article  CAS  PubMed  Google Scholar 

  61. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686–9.

    Article  CAS  PubMed  Google Scholar 

  62. Yu Z, Wang R, Fok WC, Coles A, Salmon AB, Pérez VI. Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver. J Gerontol Ser Biomed Sci Med Sci. 2014;70(4):410–20.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the following veterinarians and veterinary practices for providing us with samples: Dr. Kerri Hudson, Dr. James Gilchrist, Dr. Heather Culbertson and Morgan Peppenelli at Waterville Veterinary Clinic (New York); Dr. Frank Capella from Village Vet in Wampsville, NY. Pet Street Station Animal Hospital (New York); Dr. Jim Bader at Mapleview Animal Hospital (Michigan). We are also grateful to the following breeders for participating in our study: Rhonda Poe, Bob Stauffer, Allison Mitchell, Nancy Secrist, Valeria Rickard, Joanne Manning, Lita Long, Betsy Geertson, Susan Banovic, Lisa Uhrich, Sheryl Beitch, Al Farrier, Barbara Hoopes, and Rachel Sann.

Funding

The Seahorse XFe96 oxygen flux analyzer was purchased via a National Science Foundation Major Research Instrument grant (NSF MRI 1725841 to AGJ). A Research Council grant from Colgate University to AGJ partly funded this work.

Author information

Authors and Affiliations

Authors

Contributions

AGJ designed the experiments, collected tissue, grew cells, collected data, and wrote the first draft of the manuscript. SL and WC cleaned the raw data, performed the data analyses, wrote the supplement, and edited the manuscript.

Corresponding author

Correspondence to Ana Gabriela Jimenez.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest

Ethics approval

All the procedures within this study were approved by Colgate University's Institutional Care and Use Committee’s under protocol number 1819-13.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 443 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, A.G., Lalwani, S. & Cipolli, W. Effects of metformin, rapamycin, and resveratrol on cellular metabolism of canine primary fibroblast cells isolated from large and small breeds as they age. GeroScience 43, 1669–1682 (2021). https://doi.org/10.1007/s11357-021-00349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00349-7

Keywords

Navigation