Log in

Interaction of melatonin and H2S mitigates NaCl toxicity summer savory (Satureja hortensis L.) through Modulation of biosynthesis of secondary metabolites and physio-biochemical attributes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As versatile signaling molecules, melatonin (ML) and hydrogen sulfide (H2S) are well-known for their roles in response to abiotic stresses. However, their cross-talk to the regulation of biochemical defence responses and secondary metabolite synthesis during salinity has received less attention. Here, the role of ML-H2S interplay in inducing defensive responses and the biosynthesis of essential oil compounds in summer savoury plants under NaCl treatment was investigated. NaCl treatment, by increasing Na accumulation, disrupting nitrogen metabolism, and inducing oxidative stress, lowered photosynthetic pigments and savoury growth. NaCl treatment also resulted in a decrease in γ-terpinene (10.3%), α-terpinene (21.9%), and p-cymene (15.3%), while an increase in carvacrol (9.1%) was observed over the control. ML and ML + H2S increased the activity of antioxidant enzymes and the level of total phenols and flavonoids, resulting in decreased levels of hydrogen peroxide and superoxide anion and alleviation of oxidative damage under salinity. ML and ML + H2S increased K uptake and restored K/Na homeostasis, thus protecting the photosynthetic apparatus against NaCl-induced toxicity. ML and ML + H2S treatments also improved nitrate/ammonium homeostasis and stimulated nitrogen metabolism, leading to improved summer savoury adaptation to NaCl stress. ML and ML + H2S changed the composition of essential oils, leading to an increase in the monoterpene hydrocarbons and oxygenated monoterpenes in plants stressed with NaCl. However, the addition of an H2S scavenger, hypotaurine, inhibited the protective effects of the ML and ML + H2S treatments under NaCl stress, which could confirm the function of H2S as a signaling molecule in the downstream defence pathway induced by ML.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data will be made available on request.

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374. https://doi.org/10.4161/psb.5.4.10873

    Article  CAS  Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Pub. Corp

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Agbaria H, Heuer B, Zieslin N (1996) Shoot–root interaction effects on nitrate reductase and glutamine synthetase activities in rose (Rosa × hybrida cvs. Ilseta and Mercedes) graftlings. J Plant Physiol 149:559–563

    Article  CAS  Google Scholar 

  • Alharbi BM, Elhakem AH, Alnusairi GSH, Soliman MH, Hakeem KR, Hasan MM, Abdelhamid MT (2021) Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ 67(4):208–220

    Article  CAS  Google Scholar 

  • Amin B, Atif MJ, Wang X, Meng H, Ghani MI, Ali M, Ding Y, Li X, Cheng Z (2021) Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. Plant Biol 23:785–796. https://doi.org/10.1111/plb.13276

    Article  CAS  Google Scholar 

  • Amin B, Atif MJ, Meng H, Ali M, Li S, Alharby HF, Majrashi A, Hakeem KR, Cheng Z (2022) Melatonin rescues photosynthesis and triggers antioxidant defense response in Cucumis sativus plants challenged by low temperature and high humidity. Front Plant Sci 13:1–15. https://doi.org/10.3389/fpls.2022.855900

    Article  Google Scholar 

  • Amin B, Atif MJ, Pan Y, Rather SA, Ali M, Li S, Cheng Z (2023) Transcriptomic analysis of Cucumis sativus uncovers putative genes related to hormone signaling under low temperature (LT) and high humidity (HH) stress. Plant Sci 333:111750. https://doi.org/10.1016/j.plantsci.2023.111750

    Article  CAS  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  Google Scholar 

  • Bahcesular B, Yildirim ED, Karaçocuk M, Kulak M, Karaman S (2020) Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Ind Crops Prod 146:112165. https://doi.org/10.1016/j.indcrop.2020.112165

    Article  CAS  Google Scholar 

  • Balasubramaniam T, Shen G, Esmaeili N, Zhang H (2023) Plants’ response mechanisms to salinity stress. Plants (basel) 12(12):2253

    CAS  Google Scholar 

  • Bao Y, Chen J, Zhang Y, Fernie AR, Zhang J, Huang B, Zhu F, Cao F (2024) Emerging role of jasmonic acid in woody plant development. Advanced Agrochem 3(1):26–38. https://doi.org/10.1016/j.aac.2023.11.002

    Article  CAS  Google Scholar 

  • Ben Taarit M, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B (2009) Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind Crops Prod 30(3):333–337. https://doi.org/10.1016/j.indcrop.2009.06.001

    Article  CAS  Google Scholar 

  • Bose SK, Howlader P (2020) Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environ Exp Bot 176:104063

    Article  CAS  Google Scholar 

  • Cao L, Qin B, Gong Z, Zhang Y (2022) Melatonin improves nitrogen metabolism during grain filling under drought stress. Physiol Mol Biol Plants 28:1477–1488

    Article  CAS  Google Scholar 

  • Chen X, Mei C, Wang F, Wijethunge Boyagane Dewayalage IK, Yang F, Dai L, Yang F, Gao B, Cheng L, Liu G, Zhang J, Hao F (2021a) PlantSPEAD: A web resource towards comparatively analysing stress-responsive expression of splicing-related proteins in plant. Plant Biotechnol J 19(2):227–229. https://doi.org/10.1111/pbi.13486

    Article  CAS  Google Scholar 

  • Chen Z, Cao X, Niu J (2021b) Effects of melatonin on morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa under high-nitrate stress. Front Plant Sci 12:694179

    Article  Google Scholar 

  • Chen Y, Leng YN, Zhu FY, Li SE, Song T, Zhang J (2023) Water-saving techniques: physiological responses and regulatory mechanisms of crops. Adv Biotechnol 1:3. https://doi.org/10.1007/s44307-023-00003-7

    Article  Google Scholar 

  • Dawood MFA, Sofy MR, Mohamed HI, Sofy AR, Abdel-kader HAA (2022) Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. J Soil Sci Plant Nutr 22:3708–3726

    Article  CAS  Google Scholar 

  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J Plant Physiol 163:1247–1258

    Article  CAS  Google Scholar 

  • Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll - A, B and total caretenoid contents of some algae species using different solvents. Turk J Bot 22(1):13–16

    Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–100

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Duan B, Ma Y, Jiang M, Yang F, Ni L, Lu W (2015) Improvement of photosynthesis in rice (Oryza sativa L) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment. Plant Growth Regul 75:33–44

    Article  CAS  Google Scholar 

  • Ejaz A, Waliat S, Arshad MS, Khalid W, Khalid MZ, RasulSuleria HA, Luca M-I, Mironeasa C, Batariuc A, Ungureanu-Iuga M, Coţovanu I, Mironeasa S (2023) A comprehensive review of summer savory (Satureja hortensis L.): promising ingredient for production of functional foods. Front Pharmacol 14:1198970

    Article  CAS  Google Scholar 

  • Emamverdian A, Ghorbani A, Pehlivan N, Alwahibi MS, Elshikh MS, Liu G, Li Y, Barker J, Zargar M, Chen M (2023) Co-application of melatonin and zeolite boost bamboo tolerance under cadmium by enhancing antioxidant capacity, osmolyte accumulation, plant nutrient availability, and decreasing cadmium absorption. Sci Hortic 322:112433. https://doi.org/10.1016/j.scienta.2023.112433

    Article  CAS  Google Scholar 

  • Estaji A, Roosta HR, Rezaei SA, Hosseini SS, Niknam F (2018) Morphological, physiological and phytochemical response of different Satureja hortensis L. Accessions to salinity in a greenhouse experiment. J Appl Res Med Aromat Plants 10:25–33. https://doi.org/10.1016/j.jarmap.2018.04.005

    Article  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  Google Scholar 

  • Ghasemi-Omran VO, Ghorbani A, Sajjadi-Otaghsara SA (2021) Melatonin alleviates NaCl-induced damage by regulating ionic homeostasis, antioxidant system, redox homeostasis, and expression of steviol glycosides-related biosynthetic genes in in vitro cultured Stevia rebaudiana bertoni. In Vitro Cell Dev Biol-Plant 57:319–333. https://doi.org/10.1007/s11627-021-10161-9n

    Article  CAS  Google Scholar 

  • Ghazghazi H, Riahi L, Yangui I, Messaoud C, Rzigui T, Nasr Z (2022) Effect of drought stress on physio-biochemical traits and secondary metabolites production in the woody species Pinus halepensis Mill. at a juvenile development stage. J Sustain 41:878–894. https://doi.org/10.1080/10549811.2022.2048263

    Article  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018a) Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russ J Plant Physiol 65:898–907. https://doi.org/10.1134/S1021443718060079

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018b) Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol 20:729–736. https://doi.org/10.1111/plb.12717

    Article  CAS  Google Scholar 

  • Ghorbani A, Emamverdian A, Pishkar L, Chashmi KA, Salavati J, Zargar M, Chen M (2023b) Melatonin-mediated nitric oxide signaling enhances adaptation of tomato plants to aluminum stress. S Afr J Bot 162:443–450. https://doi.org/10.1016/j.sajb.2023.09.031

    Article  CAS  Google Scholar 

  • Ghorbani A, Ghasemi-Omran VO, Chen M (2023c) The effect of glycine betaine on nitrogen and polyamine metabolisms, expression of glycoside-related biosynthetic enzymes, and K/Na balance of stevia under salt stress. Plants 12:1628. https://doi.org/10.3390/plants12081628

    Article  CAS  Google Scholar 

  • Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen MX (2024a) Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnol 22:91. https://doi.org/10.1186/s12951-024-02371-1

    Article  CAS  Google Scholar 

  • Ghorbani A, Pehlivan N, Zargar M, Chen M (2024b) Synergistic role of melatonin and hydrogen sulfide in modulating secondary metabolites and metal uptake/sequestration in arsenic-stressed tomato plants. Sci Hortic 331:113159. https://doi.org/10.1016/j.scienta.2024.113159

    Article  CAS  Google Scholar 

  • Ghorbani A, Emamverdian A, Chen MX, Naz S, Muhammad HMD, Altaf MA, Ahmad R (2023a) Illustrating recent development in melatonin-heavy metal research in plant. In: Kumar R, Altaf MA, Lal MK, Tiwari RK (eds) Melatonin in plants: A pleiotropic molecule for abiotic stresses and pathogen infection. Springer, Singapore. https://doi.org/10.1007/978-981-99-6741-4_6

  • Hodges DM, Deiong JM, Forney CF, Prange R (1999) Improving the thiobarbituric acid-reactive–substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Iqbal N, Fatma M, Gautam H, Umar S, Sofo A, D’ippolito I, Khan NA (2021) The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress. Plants 10:1778. https://doi.org/10.3390/plants10091778

    Article  CAS  Google Scholar 

  • Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J (2024) The art of finding the right drug target: emerging methods and strategies. Pharmacol Rev PHARMREV-AR-2023–001028. https://doi.org/10.1124/pharmrev.123.001028

  • Jiang J, Tian Y, Li L, Yu M, Hou R, Ren X (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:446601

    Article  Google Scholar 

  • Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P (2020) Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant 168(2):256–277

    Article  CAS  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee IJ, Imran M, Asaf S, Al-Harrasi A (2020) Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants (basel) 9(4):407

    CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mukherjee S, AlSolami MA, Alhussaen KM, AlZuaibr FM, Siddiqui ZH, Al-Amri AA, Alsubaie QD (2023) Melatonin involves hydrogen sulfide in the regulation of H+-ATPase activity, nitrogen metabolism, and ascorbate-glutathione system under chromium toxicity. Environ Pollut 323:121173. https://doi.org/10.1016/j.envpol.2023.121173

    Article  CAS  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus Hupehensis. J Pineal Res 53:298–306

    Article  CAS  Google Scholar 

  • Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX (2024) Importance of pre-mRNA splicing and its study tools in plants. Adv Biotechnol 2:4. https://doi.org/10.1007/s44307-024-00009-9

    Article  Google Scholar 

  • Losada M, Paneque A (1971) Nitrite reductase. Methods Enzymol 23:487–491

    Article  Google Scholar 

  • Mehdizadeh L, Moghaddam M, Lakzian A (2019) Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application. Acta Physiol Plant 41:98

    Article  Google Scholar 

  • Meng S, Wang X, Bian Z, Li Z, Yang F, Wang S, Yoder JI, Lu J (2021) Melatonin enhances nitrogen metabolism and haustorium development in hemiparasite Santalum album Linn. Environ Exp Bot 186:104460. https://doi.org/10.1016/j.envexpbot.2021.104460

    Article  CAS  Google Scholar 

  • Mohamadi Esboei M, Ebrahimi A, Amerian MR, Alipour H (2022) Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. Front Plant Sci 13:890613

    Article  Google Scholar 

  • Molins-Legua C, Meseguer-Lloret S, Moliner- Martinez Y, Campíns-Falcó P (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. Trends Anal Chem 25:282–290

    Article  CAS  Google Scholar 

  • Mukherjee S, Bhatla SC (2021) Exogenous melatonin modulates endogenous H2S homeostasis and L-cysteine desulfhydrase activity in salt-stressed tomato (Solanum lycopersicum L. var. cherry) seedling cotyledons. J Plant Growth Regul 40:2502–2514. https://doi.org/10.1007/s00344-020-10261-7

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol 21:1295–1307

    Article  Google Scholar 

  • Nanehkaran FM, Razavi SM, Ghasemian A, Ghorbani A, Zargar M (2024) Foliar applied potassium nanoparticles (K-NPs) and potassium sulfate on growth, physiological, and phytochemical parameters in Melissa officinalis L. under salt stress. Environ Sci Pollut Res 31:31108–31122. https://doi.org/10.1007/s11356-024-33306-w

    Article  CAS  Google Scholar 

  • Oaks A, Stulen I, Jones K, Winspear MJ, Misra S, Boesel IL (1980) Enzyme of nitrogen assimilation in maize roots. Planta 148:477–484

    Article  CAS  Google Scholar 

  • Park S, Lee DE, Jang H, Byeon Y, Kim YS, Back K (2012) Melatonin- rich transgenic rice plants exhibit resistance to herbicide- induced oxidative stress. J Pineal Res 54:258–263

    Article  Google Scholar 

  • Pouresmaeil M, Nojadeh MS, Movafeghi A, Maggi F (2020) Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Ind Crops Prod 155:112785. https://doi.org/10.1016/j.indcrop.2020.112785

    Article  CAS  Google Scholar 

  • Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M (2022) Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. Front Plant Sci 13:843071

    Article  Google Scholar 

  • Rachina MA, Nicholas DJD (1985) Glutamine synthetase and glutamate synthase from Sclerotinia sclerotiorum. Phytochemistry 24:2451–2548

    Google Scholar 

  • Ranjbar M, Khakdan F, Ghorbani A, Zargar M, Chen M (2023) The variations in gene expression of GAPDH in Ocimum basilicum cultivars under drought-induced stress conditions. Environ Sci Pollut Res 30:119187–119203. https://doi.org/10.1007/s11356-023-30549-x

    Article  CAS  Google Scholar 

  • Rizwan M, Mostofa MG, Ahmad MZ, Zhou Y, Adeel M, Mehmood S, Ahmad MA, Javed R, Imtiaz M, Aziz O, Ikram M, Tu S, Liu Y (2019) Hydrogen sulfide enhances rice tolerance to nickel through the prevention of chloroplast damage and the improvement of nitrogen metabolism under excessive nickel. Plant Physiol Biochem 138:100–111. https://doi.org/10.1016/j.plaphy.2019.02.023

    Article  CAS  Google Scholar 

  • Sabzi-Nojadeh M, Pouresmaeil M, Amani M, Younessi-Hamzekhanlu M, Maggi F (2024) Colonization of Satureja hortensis L. (Summer savory) with Trichoderma harzianum alleviates salinity stress via improving physio-biochemical traits and biosynthesis of secondary metabolites. Ind Crops Prod 208:117831

    Article  CAS  Google Scholar 

  • Sarker U, Oba S (2019) Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J Sci Food Agric 99(5):2275–2284

    Article  CAS  Google Scholar 

  • Sarrou E, Chatzopoulou P, Dimassi-Theriou K, Therios I, Koularmani A (2015) Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. J Essent Oil Res 27:487–496. https://doi.org/10.1080/10412905.2015.1064485

    Article  CAS  Google Scholar 

  • Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C (2014) Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166(4):2065–2076

    Article  Google Scholar 

  • Siddiqui MH, Khan MN, Mukherjee S, Basahi RA, Alamri S, Al-Amri AA, Alsubaie QD, Ali HM, Al-Munqedhi BMA, Almohisen IAA (2021) Exogenous melatonin-mediated regulation of K+/Na+ transport, H+-ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots. Plant Biol (stuttg) 23(5):797–805

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzym 299:152–178

    Article  CAS  Google Scholar 

  • Song C, Chen X, Zhang L, Reddy ASN, Cao L, Zhu Y (2023) QuantAS: A comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms. New Phytol 240(3):928–939. https://doi.org/10.1111/nph.19193

    Article  Google Scholar 

  • Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S (2022) Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. Physiol Plant 174(1):e13633

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C (2012) Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol 12:194. https://doi.org/10.1186/1471-2229-12-194

    Article  CAS  Google Scholar 

  • Wang Z, Mu Y, Zhang L, Liu Z, Liu D, ** Z, Pei Y (2022) Hydrogen sulfide mediated the melatonin induced stoma closure by regulating the K+ channel in Arabidopsis thaliana. Environ Exp Bot 205:105125. https://doi.org/10.1016/j.envexpbot.2022.105125

    Article  CAS  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462

    Article  Google Scholar 

  • Wu F, Wan JHC, Wu S, Wong M (2012) Effects of earthworms and plant growth–promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. J Plant Nutr Soil Sci 175:423–433

    Article  CAS  Google Scholar 

  • Yan F, Wei H, Li W, Liu Z, Tang S, Chen L, Ding C, Jiang Y, Ding Y, Li G (2020) Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicol Environ Saf 206:111358. https://doi.org/10.1016/j.ecoenv.2020.111358

    Article  CAS  Google Scholar 

  • Yan F, Wei H, Ding Y, Li W, Chen L, Ding C, Tang S, Jiang Y, Liu Z, Li G (2021) Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS. Environ Exp Bot 182:104328

    Article  CAS  Google Scholar 

  • Yang L, Yang J, Hou C, Shi P, Zhang Y, Gu X, Liu W (2023) Hydrogen sulfide alleviates salt stress through auxin signaling in Arabidopsis. Environ Exp Bot 211:105354. https://doi.org/10.1016/j.envexpbot.2023.105354

    Article  CAS  Google Scholar 

  • Younis AA, Mansour MMF (2023) Hydrogen sulfide priming enhanced salinity tolerance in sunflower by modulating ion hemostasis, cellular redox balance, and gene expression. BMC Plant Biol 23(1):525. https://doi.org/10.1186/s12870-023-04552-w

    Article  CAS  Google Scholar 

  • Zeng W, Mostafa S, Lu Z, ** B (2022) Melatonin-mediated abiotic stress tolerance in plants. Front Plant Sci 13:847175

    Article  Google Scholar 

  • Zhang X, Fu X, Liu F, Wang Y, Bi H, Ai X (2021) Hydrogen Sulfide Improves the Cold Stress Resistance through the CsARF5-CsDREB3 Module in Cucumber. Int J Mol Sci 22(24):13229

    Article  CAS  Google Scholar 

  • Zhang X, He P, Guo R, Huang K, Huang X (2023) Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat. Sci Rep 13:12483

    Article  CAS  Google Scholar 

  • Zhao C, Guo H, Wang J, Wang Y, Zhang R (2021) Melatonin enhances drought tolerance by regulating leaf stomatal behavior, carbon and nitrogen metabolism, and related gene expression in maize plants. Front Plant Sci 12:779382

    Article  Google Scholar 

  • Zou H, Zhang NN, Pan Q, Zhang JH, Chen J, Wei GH (2019) Hydrogen sulfide promotes nodulation and nitrogen fixation in soybean–rhizobia symbiotic system. Mol Plant Microbe Interact 32(8):972–985

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/526/45.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.K. and M.Z.; methodology, A.K.; software, A.K.; validation, I.B., and A.K.; formal analysis, I.B.; investigation, A.K.; data curation, I.B. and M.Z.; writing—original draft preparation, A.K.; writing—review and editing, A.G. and M.Z.; visualization, M.Z.; supervision, M.Z.; project administration, M.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Meisam Zargar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agreed to contribute to this study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalofah, A., Bamatov, I. & Zargar, M. Interaction of melatonin and H2S mitigates NaCl toxicity summer savory (Satureja hortensis L.) through Modulation of biosynthesis of secondary metabolites and physio-biochemical attributes. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-34356-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-34356-w

Keywords

Navigation