Log in

Kinetic analysis of p-rGO/n-TiO2 nanocomposite generated by hydrothermal technique for simultaneous photocatalytic water splitting and degradation of methylene blue dye

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the nanocomposites of reduced graphene oxide/TiO2 (rGO/TiO2 with different percentages) have been synthesized using a modified Hummers’ method followed by hydrothermal treatment. The morphology and bonding structure of the prepared samples have been characterized by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The photo-characteristic aspects of the prepared samples have been indicated by photoluminescence (PL) emission spectroscopy and ultraviolet-visible diffuse reflection spectroscopy (DRS). The photocatalytic performance of rGO/TiO2 demonstrated that it is an effective photocatalyst for methylene blue (MB) dye decomposition through illumination by a mercury lamp. Within 60 min of continuous irradiation, the nanocomposite-induced MB decomposition reached a rate of over 99%. Different MB concentrations and optimal percent loadings in catalysts have been investigated. Furthermore, the results showed that as the amount of catalyst increased, the decomposition of MB enhanced. Finally, the loading percentage of rGO with TiO2 has been studied, and an empirical equation relating the reaction rate constant until the mass of the photocatalyst and dye concentration has been proposed. The results showed that the prepared nanocomposites had good photocatalytic activity toward water splitting and photo-decomposition of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Experimental data are available upon request.

References

  • Acharya L, Nayak S, Pattnaik SP, Acharya R, Parida K (2020) Resurrection of boron nitride in pn type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J Colloid Interface Sci 566:211–223

    Article  CAS  Google Scholar 

  • Ahmad M, Ahmed E, Hong Z, Xu J, Khalid N, Elhissi A, Ahmed W (2013) A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl Surf Sci 274:273–281

    Article  CAS  Google Scholar 

  • Alamelu K, Raja V, Shiamala L, Ali BJ (2018) Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl Surf Sci 430:145–154

    Article  CAS  Google Scholar 

  • Al-Mamun M, Kader S, Islam M, Khan M (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7(5):103248

    Article  CAS  Google Scholar 

  • Al-Rawashdeh NA, Allabadi O, Aljarrah MT (2020) Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega 5(43):28046–28055

    Article  CAS  Google Scholar 

  • Anku W, Oppong SO-B, Shukla SK, Govender PP (2016) Comparative photocatalytic degradation of monoazo and diazo dyes under simulated visible light using Fe3+/C/S doped-TiO2 nanoparticles. Acta Chim Slov 63(2):380–391

    Article  CAS  Google Scholar 

  • Appavoo IA, Hu J, Huang Y, Li SFY, Ong SL (2014) Response surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/UVA process using central composite design. Water Res 57:270–279

    Article  Google Scholar 

  • Asgharzadeh H, Eslami S (2019) Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J Alloys Compd 806:553–565

    Article  CAS  Google Scholar 

  • Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C (2018) Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature. Water Res 142:26–45

    Article  CAS  Google Scholar 

  • Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2013) The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. J Alloys Compd 550:63–70

    Article  CAS  Google Scholar 

  • Badawy MI, Ghaly MY, Ali ME (2011) Photocatalytic hydrogen production over nanostructured mesoporous titania from olive mill wastewater. Desalination 267(2-3):250–255

    Article  CAS  Google Scholar 

  • Bamwenda GR, Arakawa H (2001) The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+. Sol Energy Mater Sol Cells 70(1):1–14

    Article  CAS  Google Scholar 

  • Benjwal P, Kumar M, Chamoli P, Kar KK (2015) Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic (iii) by reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites. RSC Adv 5(89):73249–73260

    Article  CAS  Google Scholar 

  • Bharatvaj J, Preethi V, Kanmani S (2018) Hydrogen production from sulphide wastewater using Ce3+–TiO2 photocatalysis. Int J Hydrog Energy 43(8):3935–3945

    Article  CAS  Google Scholar 

  • Bharti B, Kumar S, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6(1):1–12

    Article  CAS  Google Scholar 

  • Boumeriame H, Da Silva ES, Cherevan AS, Chafik T, Faria JL, Eder D (2021) Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. J Energy Chem 64:406–431

    Article  Google Scholar 

  • Buliyaminu IA, Aziz MA, Shah SS, Mohamedkhair A, Yamani ZH (2020) Preparation of nano-Co3O4-coated Albizia procera-derived carbon by direct thermal decomposition method for electrochemical water oxidation. Arab J Chem 13(3):4785–4796

    Article  CAS  Google Scholar 

  • Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  Google Scholar 

  • Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, Ding G (2012) TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy 37(3):2224–2230

    Article  CAS  Google Scholar 

  • Cheng K, Han N, Su Y, Zhang J, Zhao J (2017) Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations. Sci Rep 7(1):1–8

    Google Scholar 

  • Cruz M, Gomez C, Duran-Valle CJ, Pastrana-Martinez LM, Faria JL, Silva AM, Faraldos M, Bahamonde A (2017) Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl Surf Sci 416:1013–1021

    Article  CAS  Google Scholar 

  • Deb Nath NC, Shah SS, Qasem MAA, Zahir MH, Aziz MA (2019) Defective carbon nanosheets derived from Syzygium cumini leaves for electrochemical energy-storage. ChemistrySelect 4(31):9079–9083

    Article  CAS  Google Scholar 

  • Dong L, Mazzarino I, Alexiadis A (2021) Development of solid–fluid reaction models—a literature review. ChemEngineering 5(3):36

    Article  CAS  Google Scholar 

  • Eidsvåg H, Bentouba S, Vajeeston P, Yohi S, Velauthapillai D (2021) TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules 26(6):1687

    Article  Google Scholar 

  • Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115(21):10694–10701

    Article  CAS  Google Scholar 

  • Fu Y, Chen H, Sun X, Wang X (2012a) Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis. Appl Catal B Environ 111:280–287

    Article  Google Scholar 

  • Fu Y, Chen H, Sun X, Wang X (2012b) Graphene-supported nickel ferrite: a magnetically separable photocatalyst with high activity under visible light. AICHE J 58(11):3298–3305

    Article  CAS  Google Scholar 

  • Fu Y, **ong P, Chen H, Sun X, Wang X (2012c) High photocatalytic activity of magnetically separable manganese ferrite–graphene heteroarchitectures. Ind Eng Chem Res 51(2):725–731

    Article  Google Scholar 

  • Gao Y, Pu X, Zhang D, Ding G, Shao X, Ma J (2012) Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon 50(11):4093–4101

    Article  CAS  Google Scholar 

  • Gopinath KP, Madhav NV, Krishnan A, Malolan R, Rangarajan G (2020) Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: a review. J Environ Manag 270:110906

    Article  CAS  Google Scholar 

  • Gu L, Wang J, Cheng H, Zhao Y, Liu L, Han X (2013) One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl Mater Interfaces 5(8):3085–3093

    Article  CAS  Google Scholar 

  • Guo S, Yuan N, Zhang G, Jimmy CY (2017) Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous Mesoporous Mater 238:62–68

    Article  CAS  Google Scholar 

  • Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31(50):1901997

    Article  CAS  Google Scholar 

  • Hafeez HY, Lakhera SK, Karthik P, Anpo M, Neppolian B (2018) Facile construction of ternary CuFe2O4-TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Appl Surf Sci 449:772–779

    Article  CAS  Google Scholar 

  • Hajialilou E, Asgharzadeh H, Asl SK (2021) TiO2/rGO/Cu2O ternary hybrid for high-performance photoelectrochemical applications. Appl Surf Sci 544:148832

    Article  CAS  Google Scholar 

  • He G, Ding J, Zhang J, Hao Q, Chen H (2015) One-step ball-milling preparation of highly photocatalytic active CoFe2O4–reduced graphene oxide heterojunctions for organic dye removal. Ind Eng Chem Res 54(11):2862–2867

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  • Iervolino G, Zammit I, Vaiano V, Rizzo L (2020) Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: a critical review. Heterog Photocatal 2020:225–264

    Article  Google Scholar 

  • Ikram M, Raza A, Imran M, Ul-Hamid A, Shahbaz A, Ali S (2020) Hydrothermal synthesis of silver decorated reduced graphene oxide (rGO) nanoflakes with effective photocatalytic activity for wastewater treatment. Nanoscale Res Lett 15(1):1–11

    Article  Google Scholar 

  • Ismail AA, Geioushy R, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B Environ 129:62–70

    Article  CAS  Google Scholar 

  • Jahanara K, Farhadi S (2019) A magnetically separable plate-like cadmium titanate–copper ferrite nanocomposite with enhanced visible-light photocatalytic degradation performance for organic contaminants. RSC Adv 9(27):15615–15628

    Article  CAS  Google Scholar 

  • Jaramillo-Fierro X, Capa LF, Medina F, González S (2021) DFT study of methylene blue adsorption on ZnTiO3 and TiO2 surfaces (101). Molecules 26(13):3780

    Article  CAS  Google Scholar 

  • Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49(8):2693–2701

    Article  CAS  Google Scholar 

  • Jiang W-L, Ding Y-C, Haider MR, Han J-L, Liang B, **a X, Yang L-M, Wang H-C, Peng Y-Z, Wang A-J (2020) A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity. Chem Eng J 391:123503

    Article  CAS  Google Scholar 

  • Kaur P, Frindy S, Park Y, Sillanpää M, Imteaz MA (2020) Synthesis of graphene-based biopolymer tio2 electrodes using pyrolytic direct deposition method and its catalytic performance. Catalysts 10(9):1050

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Zekker I, Zhang B, Hendi AH, Ahmad A, Ahmad S, Zada N, Ahmad H, Shah LA (2022) Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14(2):242

    Article  CAS  Google Scholar 

  • Kim J, Park Y, Park H (2014) Solar hydrogen production coupled with the degradation of a dye pollutant using TiO2 modified with platinum and nafion. Int J Photoenergy 2014:324859. https://doi.org/10.1155/2014/324859

  • Kim G, Choi HJ, Kim H-I, Kim J, Monllor-Satoca D, Kim M, Park H (2016) Temperature-boosted photocatalytic H2 production and charge transfer kinetics on TiO2 under UV and visible light. Photochem Photobiol Sci 15(10):1247–1253

    Article  CAS  Google Scholar 

  • Koca A, Şahin M (2002) Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. Int J Hydrog Energy 27(4):363–367

    Article  CAS  Google Scholar 

  • Kranz C, Wächtler M (2021) Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chem Soc Rev 50(2):1407–1437

    Article  CAS  Google Scholar 

  • Kumar P, Boukherroub R, Shankar K (2018) Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A 6(27):12876–12931

    Article  CAS  Google Scholar 

  • Kurniawan TA, Mengting Z, Fu D, Yeap SK, Othman MHD, Avtar R, Ouyang T (2020) Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J Environ Manag 270:110871

    Article  CAS  Google Scholar 

  • Li X, Yu J, Wageh S, Al-Ghamdi AA, **e J (2016a) Graphene in photocatalysis: a review. Small 12(48):6640–6696

    Article  CAS  Google Scholar 

  • Li Y, Tang Z, Zhang J, Zhang Z (2016b) Reduced graphene oxide three-dimensionally wrapped WO3 hierarchical nanostructures as high-performance solar photocatalytic materials. Appl Catal A Gen 522:90–100

    Article  CAS  Google Scholar 

  • Li T, Wang T, Qu G, Liang D, Hu S (2017) Synthesis and photocatalytic performance of reduced graphene oxide–TiO2 nanocomposites for orange II degradation under UV light irradiation. Environ Sci Pollut Res 24(13):12416–12425

    Article  CAS  Google Scholar 

  • Li F, Huang Y, Peng H, Cao Y, Niu Y (2020) Preparation and photocatalytic water splitting hydrogen production of titanium dioxide nanosheets. Int J Photoenergy 2020:3617312. https://doi.org/10.1155/2020/3617312

  • Liang J, Wei Y, Zhang J, Yao Y, He G, Tang B, Chen H (2018) Scalable green method to fabricate magnetically separable NiFe2O4-reduced graphene oxide nanocomposites with enhanced photocatalytic performance driven by visible light. Ind Eng Chem Res 57(12):4311–4319

    Article  CAS  Google Scholar 

  • Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P (2019) Amalgamation of N-graphene quantum dots with nanocubic like TiO2: an insight study of sunlight sensitive photocatalysis. Environ Sci Pollut Res 26(4):3455–3464

    Article  CAS  Google Scholar 

  • Lin L-Y, Nie Y, Kavadiya S, Soundappan T, Biswas P (2017) N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: effect of N species. Chem Eng J 316:449–460

    Article  CAS  Google Scholar 

  • Liu J, Wang Z, Liu L, Chen W (2011) Reduced graphene oxide as capturer of dyes and electrons during photocatalysis: surface wrap** and capture promoted efficiency. Phys Chem Chem Phys 13(29):13216–13221

    Article  CAS  Google Scholar 

  • Liu W, Qian J, Wang K, Xu H, Jiang D, Liu Q, Yang X, Li H (2013) Magnetically separable Fe3O4 nanoparticles-decorated reduced graphene oxide nanocomposite for catalytic wet hydrogen peroxide oxidation. J Inorg Organomet Polym Mater 23(4):907–916

    Article  CAS  Google Scholar 

  • Liu G, Wang R, Liu H, Han K, Cui H, Ye H (2016) Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity. J Nanopart Res 18(1):21

    Article  Google Scholar 

  • Liu X, Chen C, Chen XA, Qian G, Wang J, Wang C, Cao Z, Liu Q (2018) WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal Today 315:155–161

    Article  CAS  Google Scholar 

  • Liu WM, Li J, Zhang HY (2020) Reduced graphene oxide modified zinc oxide composites synergistic photocatalytic activity under visible light irradiation. Optik 207:163778

    Article  CAS  Google Scholar 

  • Liu W, Tian Q, Yang J, Zhou Y, Chang H, Cui W, Xu Q (2021) A two-dimensional amorphous plasmonic heterostructure of Pd/MoO3-x for enhanced photoelectrochemical water splitting performance. Chem–An Asian J 16(10):1253–1257

    Article  CAS  Google Scholar 

  • Long M, Qin Y, Chen C, Guo X, Tan B, Cai W (2013) Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with graphene oxide. J Phys Chem C 117(32):16734–16741

    Article  CAS  Google Scholar 

  • Mahfoz W, Abdul Aziz M, Shaheen Shah S, Al-Betar AR (2020) Enhanced oxygen evolution via electrochemical water oxidation using conducting polymer and nanoparticle composites. Chem–An Asian J 15(24):4358–4367

    Article  CAS  Google Scholar 

  • Meenakshisundaram S (2017) Environmental photocatalysis/photocatalytic decontamination. Handbook of eco materials. Springer, Cham, pp 1–16. https://doi.org/10.1007/978-3-319-48281-1

  • Mino L, Zecchina A, Martra G, Rossi AM, Spoto G (2016) A surface science approach to TiO2 P25 photocatalysis: an in situ FTIR study of phenol photodegradation at controlled water coverages from sub-monolayer to multilayer. Appl Catal B Environ 196:135–141

    Article  CAS  Google Scholar 

  • Mohan VB, Lau K-T, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos Part B 142:200–220

    Article  CAS  Google Scholar 

  • Mondal A, Prabhakaran A, Gupta S, Subramanian VR (2021) Boosting photocatalytic activity using reduced graphene oxide (RGO)/semiconductor nanocomposites: issues and future scope. ACS Omega 6(13):8734–8743

    Article  CAS  Google Scholar 

  • Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2012) Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res 19(9):3676–3687

    Article  CAS  Google Scholar 

  • Moustafa HM, Obaid M, Nassar MM, Abdelkareem MA, Mahmoud MS (2020) Titanium dioxide-decorated rGO as an effective electrode for ultrahigh-performance capacitive deionization. Sep Purif Technol 235:116178

    Article  CAS  Google Scholar 

  • Naldoni A, Altomare M, Zoppellaro G, Liu N, Kment Š, Zbořil R, Schmuki P (2019) Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS Catal 9(1):345–364

    Article  CAS  Google Scholar 

  • Nayak S, Parida K (2020) Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorg Chem Front 7(20):3805–3836

    Article  CAS  Google Scholar 

  • Nayak S, Parida K (2021) Recent progress in LDH@ graphene and analogous heterostructures for highly active and stable photocatalytic and photoelectrochemical water splitting. Chem–An Asian J 16(16)):2211–2248

    Article  CAS  Google Scholar 

  • Nazari Y, Salem S (2019) Efficient photocatalytic methylene blue degradation by Fe3O4@ TiO2 core/shell linked to graphene by aminopropyltrimethoxysilane. Environ Sci Pollut Res 26(24):25359–25371

    Article  CAS  Google Scholar 

  • Nguyen-Phan T-D, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW (2011) Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean J Chem Eng 28(12):2236–2241

    Article  CAS  Google Scholar 

  • Nowotny J, Sorrell C, Sheppard L, Bak T (2005) Solar-hydrogen: environmentally safe fuel for the future. Int J Hydrog Energy 30(5):521–544

    Article  CAS  Google Scholar 

  • Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  • Pastrana-Martinez LM, Morales-Torres S, Likodimos V, Falaras P, Figueiredo JL, Faria JL, Silva AM (2014) Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites. Appl Catal B Environ 158:329–340

    Article  Google Scholar 

  • Patil SS, Mali MG, Hassan MA, Patil DR, Kolekar SS, Ryu S-W (2017) One-pot in situ hydrothermal growth of BiVO4/Ag/rGO hybrid architectures for solar water splitting and environmental remediation. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Pedrosa M, Pastrana-Martínez LM, Pereira MFR, Faria JL, Figueiredo JL, Silva AM (2018) N/S-doped graphene derivatives and TiO2 for catalytic ozonation and photocatalysis of water pollutants. Chem Eng J 348:888–897

    Article  CAS  Google Scholar 

  • Peiris S, de Silva HB, Ranasinghe KN, Bandara SV, Perera IR (2021) Recent development and future prospects of TiO2 photocatalysis. J Chin Chem Soc 68(5):738–769

    Article  CAS  Google Scholar 

  • Petala A, Noe A, Frontistis Z, Drivas C, Kennou S, Mantzavinos D, Kondarides DI (2019) Synthesis and characterization of CoOx/BiVO4 photocatalysts for the degradation of propyl paraben. J Hazard Mater 372:52–60

    Article  CAS  Google Scholar 

  • Prabhu S, Pudukudy M, Sohila S, Harish S, Navaneethan M, Navaneethan D, Ramesh R, Hayakawa Y (2018) Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation. Opt Mater 79:186–195

    Article  CAS  Google Scholar 

  • Pradhan GK, Padhi DK, Parida K (2013) Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Interfaces 5(18):9101–9110

    Article  CAS  Google Scholar 

  • Purabgola A, Mayilswamy N, Kandasubramanian B (2022) "Graphene-based TiO2 composites for photocatalysis & environmental remediation: synthesis and progress." Environ Sci Pollut Res 1-21

  • Qi K, **e Y, Wang R, Liu S-Y, Zhao Z (2019) Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation. Appl Surf Sci 466:847–853

    Article  CAS  Google Scholar 

  • Raghavalu Thirumalai DP, Løgstrup Andersen T, Markussen CM, Madsen B, Lilholt H (2013) Tensile and compression properties of hybrid composites – a comparative study. In Proceedings of the 19th international conference on composite materials (ICCM19) (pp 1029–1035). Canadian Association for Composite Structures and Materials

  • Ramar V, Balasubramanian K (2019) Optical and highly enhanced solar light-driven photocatalytic activity of reduced graphene oxide wrapped α-MoO3 nanoplates. Sol Energy 194:1–10

    Article  CAS  Google Scholar 

  • Ramar V, Balasubramanian K (2021) Reduced graphene oxide/WO3 nanorod composites for photocatalytic degradation of methylene blue under sunlight irradiation. ACS Appl Nano Mater 4:5512–5521

    Article  CAS  Google Scholar 

  • Ramar V, Moothattu S, Balasubramanian K (2018) Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: a green way to remove pollution. Sol Energy 169:120–127

    Article  CAS  Google Scholar 

  • Ranjith KS, Manivel P, Rajendrakumar RT, Uyar T (2017) Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem Eng J 325:588–600

    Article  CAS  Google Scholar 

  • Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157(2-3):373–378

    Article  CAS  Google Scholar 

  • Reddy NR, Bharagav U, Kumari MM, Cheralathan K, Shankar M, Reddy KR, Saleh TA, Aminabhavi TM (2020) Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J Environ Manag 254:109747

    Article  CAS  Google Scholar 

  • Ribao P, Rivero MJ, Ortiz I (2017) TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid. Environ Sci Pollut Res 24(14):12628–12637

    Article  CAS  Google Scholar 

  • Ruidíaz-Martínez M, Álvarez MA, López-Ramón MV, Cruz-Quesada G, Rivera-Utrilla J, Sánchez-Polo M (2020) Hydrothermal synthesis of rGO-TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation. Catalysts 10(5):520

    Article  Google Scholar 

  • Safajou H, Ghanbari M, Amiri O, Khojasteh H, Namvar F, Zinatloo-Ajabshir S, Salavati-Niasari M (2021) Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water. Int J Hydrog Energy 46(39):20534–20546

    Article  CAS  Google Scholar 

  • Shah SS, Aziz MA, Mohamedkhair AK, Qasem MAA, Hakeem AS, Nazal MK, Yamani ZH (2019) Preparation and characterization of manganese oxide nanoparticles-coated Albizia procera derived carbon for electrochemical water oxidation. J Mater Sci Mater Electron 30(17):16087–16098

    Article  CAS  Google Scholar 

  • Shang H, Chen L, Wang Y, Liu H (2018) Efficient photocatalytic degradation of methylene blue by using GO/hemin/TiO2 nanocomposite under visible irradiation. Micro & Nano Lett 13(5):646–651

    Article  CAS  Google Scholar 

  • Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO 2-reduced graphene oxide sheets. J Mater Chem 21(10):3415–3421

    Article  CAS  Google Scholar 

  • Sher Shah MSA, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4(8):3893–3901

    Article  CAS  Google Scholar 

  • Shih K-Y, Kuan Y-L, Wang E-R (2021) One-step microwave-assisted synthesis and visible-light photocatalytic activity enhancement of BiOBr/RGO nanocomposites for degradation of methylene blue. Materials 14(16):4577

    Article  CAS  Google Scholar 

  • Singh R, Dutta S (2018) A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 220:607–620

    Article  CAS  Google Scholar 

  • Singh N, Jana S, Singh GP, Dey R (2020a) Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv Compos Hybrid Mater 3(1):127–140

    Article  CAS  Google Scholar 

  • Singh P, Shandilya P, Raizada P, Sudhaik A, Rahmani-Sani A, Hosseini-Bandegharaei A (2020b) Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab J Chem 13(1):3498–3520

    Article  CAS  Google Scholar 

  • Siong VLE, Lee KM, Juan JC, Lai CW, Tai XH, Khe CS (2019) Removal of methylene blue dye by solvothermally reduced graphene oxide: a metal-free adsorption and photodegradation method. RSC Adv 9(64):37686–37695

    Article  CAS  Google Scholar 

  • Soltani T, Tayyebi A, Lee B-K (2018) Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/rGO photoanode for greatly enhanced photoelectrochemical water splitting. Sol Energy Mater Sol Cells 185:325–332

    Article  CAS  Google Scholar 

  • Sonu K, Puttaiah SH, Raghavan VS, Gorthi SS (2021) Photocatalytic degradation of MB by TiO2: studies on recycle and reuse of photocatalyst and treated water for seed germination. Environ Sci Pollut Res 28(35):48742–48753

    Article  CAS  Google Scholar 

  • Sultana S, Mansingh S, Parida K (2018) Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: a surface oxygen vacancy promoted z-scheme-based 2D-2D nanocomposite photocatalyst with enhanced photocatalytic activity. J Phys Chem C 122(1):808–819

    Article  CAS  Google Scholar 

  • Tang B, Chen H, Peng H, Wang Z, Huang W (2018) Graphene modified TiO2 composite photocatalysts: mechanism, progress and perspective. Nanomaterials 8(2):105

    Article  Google Scholar 

  • Tao W, Wang M, Ali R, Nie S, Zeng Q, Yang R, Lau W-M, He L, Tang H, Jian X (2019) Multi-layered porous hierarchical TiO2/g-C3N4 hybrid coating for enhanced visible light photocatalysis. Appl Surf Sci 495:143435

    Article  CAS  Google Scholar 

  • Teodosiu C, Fiore S (2019) Environmental and energy assessment of municipal wastewater treatment plants in Italy and Romania: a comparative study. Water 11(8):1611

    Article  Google Scholar 

  • Timmerberg S, Kaltschmitt M, Finkbeiner M (2020) Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas–GHG emissions and costs. Energy Conv Manag: X 7:100043

    CAS  Google Scholar 

  • Tran Thi VH, Cao TH, Pham TN, Pham TT, Le MC (2019) Synergistic adsorption and photocatalytic activity under visible irradiation using Ag-ZnO/GO nanoparticles derived at low temperature. J Chem 2019:2979517. https://doi.org/10.1155/2019/2979517

  • Tran TTH, Kosslick H, Schulz A, Nguyen QL (2017) Photocatalytic performance of crystalline titania polymorphs in the degradation of hazardous pharmaceuticals and dyes. Adv Nat Sci Nanosci Nanotechnol 8(1):015011

    Article  Google Scholar 

  • Ullah H, Loh A, Trudgeon DP, Li X (2020) Density functional theory study of NiFeCo trinary oxy-hydroxides for an efficient and stable oxygen evolution reaction catalyst. ACS Omega 5(32):20517–20524

    Article  CAS  Google Scholar 

  • Usman M, Humayun M, Shah SS, Ullah H, Tahir AA, Khan A (2021) Bismuth-graphene nanohybrids: synthesis, reaction mechanisms, and photocatalytic applications—a review. Energies 14(8):2281

    Article  CAS  Google Scholar 

  • Wang J-P, Yang H-C, Hsieh C-T (2012) Visible-light photodegradation of dye on co-doped titania nanotubes prepared by hydrothermal synthesis. Int J Photoenergy 2012:206534. https://doi.org/10.1155/2012/206534

  • Wang M, Shen S, Li L, Tang Z, Yang J (2017) Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J Mater Sci 52(9):5155–5164

    Article  CAS  Google Scholar 

  • Wang G, Long X, Qi K, Dang S, Zhong M, **ao S, Zhou T (2019) Two-dimensional CdS/g-C6N6 heterostructure used for visible light photocatalysis. Appl Surf Sci 471:162–167

    Article  CAS  Google Scholar 

  • Wilke K, Breuer H (1999) The influence of transition metal do** on the physical and photocatalytic properties of titania. J Photochem Photobiol A Chem 121(1):49–53

    Article  CAS  Google Scholar 

  • Wu Y, Chen X, Cao J, Zhu Y, Yuan W, Hu Z, Ao Z, Brudvig GW, Tian F, Yu JC, Li C (2022) Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defect. Appl Catal B Environ 303:120878

    Article  CAS  Google Scholar 

  • Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y (2011) What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci 4(8):2826–2830

    Article  CAS  Google Scholar 

  • Yan B, Chen Z, Xu Y (2020) Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production. Chem–An Asian J 15(15):2329–2340

    Article  CAS  Google Scholar 

  • Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641

    Article  CAS  Google Scholar 

  • Yang B, Tian Z, Zhang L, Guo Y, Yan S (2015a) Enhanced heterogeneous Fenton degradation of methylene blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide. J Water Process Eng 5:101–111

    Article  Google Scholar 

  • Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015b) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@ rGO@ TiO2-catalyzed photo-Fenton system. Sci Rep 5(1):1–10

    Google Scholar 

  • Yang G, Li L, Lee WB, Ng MC (2018) Structure of graphene and its disorders: a review. Sci Technol Adv Mater 19(1):613–648

    Article  CAS  Google Scholar 

  • Yaqoob L, Noor T, Iqbal N, Nasir H, Sohail M, Zaman N, Usman M (2020) Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: an efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renew Energy 156:1040–1054

    Article  CAS  Google Scholar 

  • Yu H-F (2007) Phase development and photocatalytic ability of gel-derived P-doped TiO2. J Mater Res 22(9):2565–2572

    Article  CAS  Google Scholar 

  • Yu G, Lu Y, Guo J, Patel M, Bafana A, Wang X, Qiu B, Jeffryes C, Wei S, Guo Z (2018) Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv Compos Hybrid Mater 1(1):56–78

    Article  CAS  Google Scholar 

  • Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10(26):15328–15345

    Article  CAS  Google Scholar 

  • Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials? ACS Nano 4(12):7303–7314

    Article  CAS  Google Scholar 

  • Zhang W, Li Y, Wang C, Wang P, Wang Q, Wang D (2013) Mechanisms of simultaneous hydrogen production and estrogenic activity removal from secondary effluent though solar photocatalysis. Water Res 47(9):3173–3182

    Article  CAS  Google Scholar 

  • Zhang G, Zhang W, Crittenden J, Minakata D, Chen Y, Wang P (2014) Effects of inorganic electron donors in photocatalytic hydrogen production over Ru/(CuAg)0.15In0.3Zn1.4S2 under visible light irradiation. J Renew Sustain Energy 6(3):033131

    Article  Google Scholar 

  • Zhang Y, Zhang Y, Li X, Zhao X, Anning C, Crittenden J, Lyu X (2020) Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production. Front Environ Sci Eng 14:69

    Article  CAS  Google Scholar 

  • Zhao X, Zhang G, Zhang Z (2020) TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: state-of-the-art and future prospects. Environ Int 136:105453

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hager M. Moustafa: experimentation and analysis, writing—original draft preparation (60%). Mohamed S. Mahmoud: interpreting kinetic study part, writing—reviewing and editing (20%). Mamdouh M. Nassar: conceptualization, interpreting characterization part (20%).

Corresponding author

Correspondence to Mohamed S. Mahmoud.

Ethics declarations

Ethics approval

This manuscript has no ethical approvals (not applicable).

Consent to participate

Not applicable to this manuscript.

Consent for publication

Not applicable to this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, H.M., Mahmoud, M.S. & Nassar, M.M. Kinetic analysis of p-rGO/n-TiO2 nanocomposite generated by hydrothermal technique for simultaneous photocatalytic water splitting and degradation of methylene blue dye. Environ Sci Pollut Res 30, 18181–18198 (2023). https://doi.org/10.1007/s11356-022-23430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23430-w

Keywords

Navigation