Log in

Zinc-based triazole metal complexes for efficient iodine adsorption in water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Radioactive iodine is extremely harmful to the environment, and it is of great significance to develop materials that efficiently remove iodine. We prepared two triazole metal complexes with simple method, denoted as Zn(tr)(OAc) and Zn(ttr)(OAc), which were used to adsorb iodine from aqueous solution. The properties and adsorption mechanism of the two materials were studied by different techniques including XRD, SEM, N2 porosimetry at 77 K, FTIR, TGA, elemental analysis (EDS), and X-ray photoelectron spectroscopy (XPS). The results showed that both materials had good water and thermal stability. Pseudo-second-order kinetic model was better at describing the iodine adsorption kinetics onto the adsorbents. It was proved that chemical adsorption dominated, iodine mainly enriched on the materials in the form of I3−1. Zn(ttr)(OAc) had a higher adsorption capacity than Zn(tr)(OAc) due to the electron-donating group –NH2. The maximum adsorption capacity of the two materials for iodine reached 714.501 mg·g−1 and 846.108 mg·g−1 at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  • Alamgholiloo H, Rostamnia S, Hassankhani A, Liu X, Eftekhari A, Hasanzadeh A, Zhang K, Karimi-Maleh H, Khaksar S, Varma RS, Shokouhimehr M (2020) Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: synergic boost to hydrogen production from formic acid [J]. J Colloid Interface Sci 567:126–135

    Article  CAS  Google Scholar 

  • Chapman KW (2010) Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation [J]. J Am Chem Soc 132(26):8897–8899

    Article  CAS  Google Scholar 

  • Chen P, He X, Pang M, Dong X, Zhao S, Zhang W (2020) Iodine capture using Zr-based metal–organic frameworks (Zr-MOFs): adsorption performance and mechanism [J]. ACS Appl Mater Interfaces 12(18):20429–20439

    Article  CAS  Google Scholar 

  • Dinh TD, Zhang D, Tuan VN (2020) High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide [J]. RSC Adv 10:14360–14367

    Article  CAS  Google Scholar 

  • El-Shahat M, Abdelhamid AE, Abdelhameed RM (2020) Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan [J]. Carbohydr Polym 231:115742

    Article  CAS  Google Scholar 

  • Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T (2013) Capture of iodine in highly stable metal–organic frameworks: a systematic study [J]. Chem Commun 49(87):10320–10322

    Article  CAS  Google Scholar 

  • Fan W, Wang X, Xu B, Wang Y, Liu D, Zhang M, Shang Y, Dai F, Zhang L, Sun D (2018) Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance [J]. J Mater Chem A 6(47):24486–24495

    Article  CAS  Google Scholar 

  • Gen L, Yang H, **g L et al (2020) Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers [J]. Chem Eng J 382:122833

    Article  Google Scholar 

  • Geng T, Ma L, Chen G, Zhang C, Zhang W, Niu Q (2020) Fluorescent conjugated microporous polymers containing pyrazine moieties for adsorbing and fluorescent sensing of iodine [J]. Environ Sci Pollut Res 27(8):20235–20245

    Article  CAS  Google Scholar 

  • Geng T, Zhu Z, Zhang W, Wang Y (2017) A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection [J]. J Mater Chem A 5(16):7612–7617

    Article  CAS  Google Scholar 

  • Giménez RE, Piccinini E, Azzaroni O, Rafti M (2019) Lectin-recognizable MOF glyconanoparticles: supramolecular glycosylation of ZIF-8 nanocrystals by sugar-based surfactants. ACS Omega 4(1):842–848

  • Hassan A, Sadegh R, Asadollah H et al (2018) Synthesis of a zeolitic imidazolate–zinc metal–organic framework and the combination of its catalytic properties with 2,2,2-trifluoroethanol for N-formylation [J]. Synlett 29:1593–1596

    Article  Google Scholar 

  • Hu G, Zhang W, Chen Y, Xu C, Liu R, Han Z (2020) Removal of boron from water by GO/ZIF-67 hybrid material adsorption [J]. Environ Sci Pollut Res 27(22):28396–28407

    Article  CAS  Google Scholar 

  • Hu M-L, Safarifard V, Doustkhah E et al (2018) Taking organic reactions over metal-organic frameworks as heterogeneous catalysis [J]. Microporous Mesoporous Mater 256:111–127

    Article  CAS  Google Scholar 

  • Li G, Yao C, Wang J, Xu Y (2017) Synthesis of tunable porosity of fluorine-enriched porous organic polymer materials with excellent CO2, CH4 and iodine adsorption [J]. Sci Rep 7(1):13972

    Article  Google Scholar 

  • Li P, Bernards MT (2015) Impact of magnesium oxide preparation conditions on iodine adsorption capacity [J]. Nucl Sci Eng 181(3):310–317

    Article  Google Scholar 

  • Lin G, Zhu L, Duan T, Zhang L, Liu B, Lei J (2019) Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides [J]. Chem Eng J 378:122181

    Article  CAS  Google Scholar 

  • Liu B, Zhang XC (2008) Two new d 10 2D layered frameworks based on 1,2,4-triazole bridge: Syntheses, structures, and fluorescence [J]. Inorg Chem Commun 11(10):1162–1165

    Article  CAS  Google Scholar 

  • Liu R, Zhang W, Chen Y, Xu C, Hu G, Han Z (2020) Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution [J]. Sep Purif Technol 233:115999

    Article  CAS  Google Scholar 

  • Liu X, Shi C, Zhai CW et al (2016) Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material [J]. ACS Appl Mater Interfaces 8(7):4585–4591

    Article  CAS  Google Scholar 

  • Li ZJ, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang ZH, Guo X, Lin J, Wang JQ (2020) Ultrastable thorium metal–organic frameworks for efficient iodine adsorption [J]. Inorg Chem 59(7):4435–4442

    Article  CAS  Google Scholar 

  • Li Y, Yu H, Xu F, Guo Q, **e Z, Sun Z (2019) Solvent controlled self-assembly of π-stacked/H-bonded supramolecular organic frameworks from a C3-symmetric monomer for iodine adsorption [J]. CrystEngComm 21:1742–1749

    Article  CAS  Google Scholar 

  • Long X, Chen YS, Zheng Q, **e XX, Tang H, Jiang LP, Jiang JT, Qiu JH (2020) Removal of iodine from aqueous solution by PVDF/ZIF-8 nanocomposite membranes [J]. Sep Purif Technol 238:116488

    Article  CAS  Google Scholar 

  • Lu JN, Zhou SF, Zhang SJ, Zhang CX, Wang QL (2019) Remarkable enhancement of proton conductivity by introducing imidazole into MOFs and forming composite membranes [J]. Eur J Inorg Chem 2019(6):794–799

    Article  CAS  Google Scholar 

  • Panahi P, Nouruzi N, Doustkhah E, Mohtasham H, Ahadi A, Ghiasi-Moaser A, Rostamnia S, Mahmoudi G, Khataee A (2019) Zirconium based porous coordination polymer (PCP) bearing organocatalytic ligand: A promising dual catalytic center for ultrasonic heterocycle synthesis. Ultrason Sonochem 58:104653

  • ** M, Bingbing Q, Ying L et al (2016) AgII doped MIL-101 and its adsorption of iodine with high speed in solution [J]. J Solid State Chem 237:274–283

    Article  Google Scholar 

  • Qiao S, Wang T, Huang W, Jiang JX, du Z, Shieh FK, Yang R (2016) Dendrimer-like conjugated microporous polymers [J]. Polym Chem 7(6):1281–1289

    Article  CAS  Google Scholar 

  • Rani L, Kaushal J, Srivastav AL, Mahajan P (2020) A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions [J]. Environ Sci Pollut Res 27(36):44771–44796

    Article  Google Scholar 

  • Rostamnia S, Alamgholiloo H, Jafari M (2018) Ethylene diamine post-synthesis modification on open metal site Cr-MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction [J]. Appl Organomet Chem 32(8):e4370

    Article  Google Scholar 

  • Rostamnia S, Mohsenzad F (2018) Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation [J]. Mol Cataly 445:12–20

    Article  CAS  Google Scholar 

  • Sachin U, Nandanwar CK, Utgikar V et al (2016) Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment–a review [J]. Chem Eng J 306:369–381

    Article  Google Scholar 

  • Safarifard V, Morsali A (2014) Influence of an amine group on the highly efficient reversible adsorption of iodine in two novel isoreticular interpenetrated pillared-layer microporous metal–organic frameworks [J]. Crystengcomm 16(37):8660–8663

    Article  CAS  Google Scholar 

  • Sato I, Kudo H, Tsuda S (2011) Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water[J]. J Toxicol Sci 36(6):829–834

    Article  CAS  Google Scholar 

  • Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM (2011) Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8 [J]. J Am Chem Soc 133(32):12398–12401

    Article  CAS  Google Scholar 

  • Su Y, Zhang Y, Li C et al (2020) Direct hybridization of Pd on metal–organic framework (MOF)@PAN(C) to catalyze Suzuki reaction [J]. Catal Lett 74:1–10

    Google Scholar 

  • Vaitsis C, Sourkouni G, Argirusis C (2019) Metal organic frameworks (MOFs) and ultrasound: a review [J]. Ultrason Sonochem 52:106–119

    Article  CAS  Google Scholar 

  • Wang Z, Huang Y, Yang J, Li Y, Zhuang Q, Gu J (2017) The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine [J]. Dalton Trans 46(23):7412–7420

    Article  CAS  Google Scholar 

  • Wu Y, **e Y, Zhong F, Gao J, Yao J (2020) Fabrication of bimetallic Hofmann-type metal-organic Frameworks@Cellulose aerogels for efficient iodine capture [J]. Microporous Mesoporous Mater 306:110386

    Article  CAS  Google Scholar 

  • Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G (2015) Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites [J]. Angew Chem Int Ed 54(43):12733–12337

    Article  CAS  Google Scholar 

  • Yi X, Dong W, Zhang X et al (2016) MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose [J]. Anal Bioanal Chem 408(30):1–8

    Article  Google Scholar 

  • Yoshida N, Takahashi Y (2012) Land-surface contamination by radionuclides from the Fukushima Daiichi nuclear power plant accident [J]. Elements 8(3):201–206

    Article  CAS  Google Scholar 

  • Yu F, Chen Y, Wang Y et al (2020) Synthesis of metal–organic framework nanocrystals immobilized with 3D flowerlike Cu–Bi-layered double hydroxides for iodine efficient removal [J]. J Mater Res 35(3):1–13

    Article  Google Scholar 

  • Yu Y, Chen C, He C et al (2019) In situ growth synthesis of CuO@Cu-MOFs core-shell materials as novel low-temperature NH3-SCR catalysts[J]. ChemCatChem 11(3):979–984

    CAS  Google Scholar 

  • Zeng MH, Wang QX, Tan YX, Hu S, Zhao HX, Long LS, Kurmoo M (2010) Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity [J]. J Am Chem Soc 132(8):2561–2563

    Article  CAS  Google Scholar 

  • Zhang N, Sun LX, Bai FY, **ng YH (2020) Thorium–organic framework constructed with a semirigid triazine hexacarboxylic acid ligand: unique structure with thorium oxide wheel clusters and iodine adsorption behavior [J]. Inorg Chem 59(6):3964–3973

    Article  CAS  Google Scholar 

  • Zhou J, Hao S, Gao L, Zhang Y (2014) Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine [J]. Ann Nucl Energy 72:237–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the support of the National Natural Science Foundation of China.

Funding

The work was supported by the National Natural Science Foundation of China (21667024).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Jianxian Qin: experiment preparation and completion, data analysis, original draft preparation, and writing; Wei Zhang and Yuantao Chen*: methodology analysis; Rong Liu: data analysis; Yuanrui Fan: original draft review.

Corresponding author

Correspondence to Yuantao Chen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have agreed with the content and all have given explicit consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Zhang, W., Chen, Y. et al. Zinc-based triazole metal complexes for efficient iodine adsorption in water. Environ Sci Pollut Res 28, 28797–28807 (2021). https://doi.org/10.1007/s11356-021-12588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12588-4

Keywords

Navigation