Log in

Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Maximal, safe resection of solid tumors is considered a critical first step in successful cancer treatment. The advent of fluorescence image-guided surgery (FIGS) using non-specific agents has improved patient outcomes, particularly in the case of glioblastoma. Molecularly targeted agents that recognize specific tumor biomarkers have the potential to augment these gains. Identification of the optimal combination of targeting moiety and fluorophore is needed prior to initiating clinical trials.

Procedures

A 20-amino acid peptide (SBK2) recognizing the receptor protein-tyrosine phosphatase mu (PTPmu)–derived tumor-specific biomarker, with or without a linker, was conjugated to three different near-infrared fluorophores: indocyanine green (ICG), IRDye® 800CW, and Tide Fluor™ 8WS. The in vivo specificity, time course, and biodistribution were evaluated for each using mice with heterotopic human glioma tumors that express the PTPmu biomarker to identify component combinations with optimal properties for FIGS.

Results

SBK2 conjugated to ICG demonstrated excellent specificity for gliomas in heterotopic tumors. SBK2-ICG showed significantly higher in vivo tumor labeling compared to the Scram-ICG control from 10 min to 24 h, p < 0.01 at all timepoints, following injection, as well as a significantly higher ex vivo tumor signal at 24 h, p < 0.001. Inserting a six-amino acid linker between the targeting peptide and ICG increased the clearance rate and resulted in significantly higher in vivo tumor signal relative to its linker-containing Scrambled control from 10 min to 8 h, p < 0.05 at all timepoints, after dosing. Agents made with the more hydrophilic IRDye® 800CW and Tide Fluor™ 8WS showed no specific tumor labeling relative to the controls. The IRDye 800CW-conjugated agents cleared within 1 h, while the non-specific fluorescent tumor signal generated by the Tide Fluor 8WS-conjugated agents persists beyond 24 h.

Conclusions

The SBK2 PTPmu-targeting peptide conjugated to ICG specifically labels heterotopic human gliomas grown in mice between 10 min and 24 h following injection. Similar molecules constructed with more hydrophilic dyes demonstrated no specificity. These studies present a promising candidate for use in FIGS of PTPmu biomarker–expressing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author (SBK) upon reasonable request.

References

  1. Sim HW, Morgan ER, Mason WP (2018) Contemporary management of high-grade gliomas. CNS Oncol 7:51–65

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Youngblood MW, Stupp R, Sonabend AM (2021) Role of Resection in glioblastoma management. Neurosurg Clin N Am 32:9–22

    Article  PubMed  Google Scholar 

  4. Gorlia T, van den Bent MJ, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. Lancet Oncol 9:29–38

    Article  PubMed  Google Scholar 

  5. Gittleman H, Cioffi G, Chunduru P et al (2019) An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival. Neuro-Oncol Adv 1:vdz007

  6. Patil N, Somasundaram E, Waite KA et al (2021) Independently validated sex-specific nomograms for predicting survival in patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. J Neurooncol 155:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Craig SEL, Wright J, Sloan AE, Brady-Kalnay SM (2016) Fluorescent-guided surgical resection of glioma with targeted molecular imaging agents: a literature review. World Neurosurg 90:154–163

    Article  PubMed  PubMed Central  Google Scholar 

  8. Palmieri G, Cofano F, Salvati LF et al (2021) Fluorescence-guided surgery for high-grade gliomas: state of the art and new perspectives. Technol Cancer Res Treat 20:15330338211021605

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  10. Jiang JX, Keating JJ, Jesus EM et al (2015) Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nuclear Med Mol Imaging 5:390–400

    Google Scholar 

  11. Stewart HL, Birch DJS (2021) Fluorescence guided surgery. Methods Appl Fluoresc 9(4):042002

    Article  CAS  Google Scholar 

  12. Kaneko S, Kaneko S (2016) Fluorescence-guided resection of malignant glioma with 5-ALA. Int J Biomed Imaging 2016:6135293

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eatz TA, Eichberg DG, Lu VM, Di L, Komotar RJ, Ivan ME (2022) Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol 156:233–256

    Article  CAS  PubMed  Google Scholar 

  14. Landsman ML, Kwant G, Mook GA, Zijlstra WG (1976) Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 40:575–583

    Article  CAS  PubMed  Google Scholar 

  15. Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

    Article  CAS  PubMed  Google Scholar 

  16. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37-61

    Article  PubMed  Google Scholar 

  17. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  18. Zhang DY, Singhal S, Lee JYK (2019) Optical principles of fluorescence-guided brain tumor surgery: a practical primer for the neurosurgeon. Neurosurgery 85:312–324

    Article  PubMed  Google Scholar 

  19. Debie P, Hernot S (2019) Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front Pharmacol 10:510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanyi JL, Randall LM, Chambers SK et al (2023) A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor–positive ovarian cancer (Study 006). Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology 41:276–284. https://doi.org/10.1200/JCO.22.00291

    Article  CAS  PubMed  Google Scholar 

  21. Lui NS, Singhal S (2022) Intraoperative molecular imaging of lung cancer: a review. Surg Oncol Clin N Am 31:685–693

    Article  PubMed  Google Scholar 

  22. Van Keulen S, Hom M, White H, Rosenthal EL, Baik FM (2022) The evolution of fluorescence-guided surgery. Mol Imaging Biol. https://doi.org/10.1007/s11307-022-01772-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burden-Gulley SM, Gates TJ, Burgoyne AM et al (2010) A novel molecular diagnostic of glioblastomas: detection of an extracellular fragment of protein tyrosine phosphatase mu. Neoplasia (New York, NY) 12:305–316

    Article  CAS  Google Scholar 

  24. Burgoyne AM, Phillips-Mason PJ, Burden-Gulley SM et al (2009) Proteolytic cleavage of protein tyrosine phosphatase mu regulates glioblastoma cell migration. Can Res 69:6960–6968

    Article  CAS  Google Scholar 

  25. Burgoyne AM, Palomo JM, Phillips-Mason PJ et al (2009) PTPmu suppresses glioma cell migration and dispersal. Neuro Oncol 11:767–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Phillips-Mason PJ, Craig SE, Brady-Kalnay SM (2014) A protease storm cleaves a cell-cell adhesion molecule in cancer: multiple proteases converge to regulate PTPmu in glioma cells. J Cell Biochem 115:1609–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vincent J, Craig SEL, Johansen ML et al (2021) Detection of tumor-specific PTPmu in gynecological cancer and patient derived xenografts. Diagnostics (Basel, Switzerland) 11(2):181

    CAS  PubMed  Google Scholar 

  28. Johansen ML, Gao Y, Hutnick MA et al (2017) Quantitative molecular imaging with a single Gd-based contrast agent reveals specific tumor binding and retention in vivo. Anal Chem 89:5932–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johansen ML, Perera R, Abenojar E et al (2021) Ultrasound-based molecular imaging of tumors with PTPmu biomarker-targeted nanobubble contrast agents. Int J Mol Sci 22(4):1983

  30. Covarrubias G, Johansen ML, Vincent J et al (2020) PTPmu-targeted nanoparticles label invasive pediatric and adult glioblastoma. Nanomed Nanotechnol Biol Med 28:102216

    Article  CAS  Google Scholar 

  31. Herrmann K, Johansen ML, Craig SE et al (2015) Molecular imaging of tumors using a quantitative T 1 map** technique via magnetic resonance imaging. Diagnostics (Basel, Switzerland) 5:318–332

    CAS  PubMed  Google Scholar 

  32. Burden-Gulley SM, Qutaish MQ, Sullivant KE et al (2011) Novel cryo-imaging of the glioma tumor microenvironment reveals migration and dispersal pathways in vivid three-dimensional detail. Can Res 71:5932–5940

    Article  CAS  Google Scholar 

  33. Qutaish MQ, Sullivant KE, Burden-Gulley SM et al (2012) Cryo-image analysis of tumor cell migration, invasion, and dispersal in a mouse xenograft model of human glioblastoma multiforme. Mol Imag Biol 14:572–583

    Article  Google Scholar 

  34. Burden-Gulley SM, Qutaish MQ, Sullivant KE et al (2013) Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu. Int J Cancer 132:1624–1632

    Article  CAS  PubMed  Google Scholar 

  35. Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discovery 14:203–219

    Article  CAS  PubMed  Google Scholar 

  36. Usama SM, Thapaliya ER, Luciano MP, Schnermann MJ (2021) Not so innocent: impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 63:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evers TH, van Dongen EM, Faesen AC, Meijer EW, Merkx M (2006) Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45:13183–13192

    Article  CAS  PubMed  Google Scholar 

  38. Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA (2016) Indocyanine green: historical context, current applications, and future considerations. Surg Innov 23:166–175

    Article  PubMed  Google Scholar 

  39. Renault K, Fredy JW, Renard PY, Sabot C (2018) Covalent modification of biomolecules through maleimide-based labeling strategies. Bioconjug Chem 29:2497–2513

    Article  CAS  PubMed  Google Scholar 

  40. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV (2015) Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem 26:145–152

    Article  CAS  PubMed  Google Scholar 

  41. Desmettre T, Devoisselle JM, Mordon S (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45:15–27

    Article  CAS  PubMed  Google Scholar 

  42. Heintz R, Svensson CK, Stoeckel K, Powers GJ, Lalka D (1986) Indocyanine green: pharmacokinetics in the rabbit and relevant studies of its stability and purity. J Pharm Sci 75:398–402

    Article  CAS  PubMed  Google Scholar 

  43. DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901

    Article  PubMed  Google Scholar 

  44. Garcia M, Edmiston C, York T et al (2018) Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery. Optica 5:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teng CW, Huang V, Arguelles GR et al (2021) Applications of indocyanine green in brain tumor surgery: review of clinical evidence and emerging technologies. Neurosurg Focus 50:E4

    Article  PubMed  Google Scholar 

  46. Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A (2017) Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS ONE 12:e0187563

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang R, Vider J, Kovar JL et al (2012) Integrin αvβ3-targeted IRDye 800CW near-infrared imaging of glioblastoma. Clin Cancer Res 18:5731–5740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gong H, Kovar JL, Cheung L, Rosenthal EL, Olive DM (2014) A comparative study of affibody, panitumumab, and EGF for near-infrared fluorescence imaging of EGFR- and EGFRvIII-expressing tumors. Cancer Biol Ther 15:185–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Major and Mamuni Swain for expert technical assistance, and Zoey Lockwood for assistance with the Varian spectrophotometers. An NIH shared instrument grant, 1S10RR031537-01, purchased the Orbitrap Elite LC-MS that was utilized for these agents in the Lerner Research Institute Proteomics Core at the Cleveland Clinic. SBK and AES were funded by a National Institutes of Health grant (R01CA217956). SBK was funded by the Tabitha Yee-May Lou Endowment Fund for Brain Cancer Research. Additional support was obtained from the National Institutes of Health sponsored Case Comprehensive Cancer Center, their Cancer Imaging Program and its cores (P30 CA043703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann M. Brady-Kalnay.

Ethics declarations

Conflict of Interest

Dr. Brady-Kalnay has licensed these agents to the biotechnology company NeoIndicate, where she serves as the Chief Scientific Officer. Mette Johansen is an inventor on the relevant patents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.71 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansen, M.L., Vincent, J., Rose, M. et al. Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker. Mol Imaging Biol 25, 744–757 (2023). https://doi.org/10.1007/s11307-023-01799-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01799-5

Keywords

Navigation