Log in

Fluorescent Polymer Dots for Tracking SKOV3 Cells in Living Mice with Probe-Based Confocal Laser Endomicroscopy

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Probe-based confocal laser endomicroscopy (pCLE) is a novel technique allowing real-time and high-resolution imaging in vivo. It provides microscopic images and increases the penetration depth of tissues compared with conventional white light endoscopy. The aim of the present study was to track ovarian cancer cells in organs by fluorescent polymer dots based on pCLE.

Procedures

SKOV3-mCherry cells were incubated with polymer dots for 24 h in a serum-free culture medium. Labeled cells were administrated to nude mice via intravenous, intraperitoneal, and lymph node injection. The fluorescent signals of labeled cells in organs were observed by pCLE. Furthermore, the results were confirmed by frozen section analysis.

Results

pCLE displayed fluorescence signals of labeled cells in the vessels of organs. Besides, the accumulations of labeled cells visualized in detoxification organs like the spleen and kidney were increased with time.

Conclusions

In this article, we present a real-time and convenient method for tracking SKOV3-mCherry in living mice by combined fluorescent polymer dots with pCLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Chen D, Wu I, Liu Z, Tang Y, Chen H, Yu J, Wu C, Chiu DT (2017) Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci 8:3390–3398

    Article  CAS  Google Scholar 

  2. Jeong S, Jung Y, Bok S, Ryu YM, Lee S, Kim YE, Song J, Kim M, Kim SY, Ahn GO, Kim S (2018) Multiplexed in vivo imaging using size-controlled quantum dots in the second near-infrared window. Adv Healthc Mater. https://doi.org/10.1002/adhm.201800695

  3. Geng J, Li K, Ding D, Zhang X, Qin W, Liu J, Tang BZ, Liu B (2012) Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 8:3655–3663

    Article  CAS  Google Scholar 

  4. **ong L, Guo Y, Zhang Y, Cao F (2016) Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo. J Mater Chem B 4:202–206

    Article  CAS  Google Scholar 

  5. Li J, Rao J, Pu K (2018) Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155:217–235

    Article  CAS  Google Scholar 

  6. Zhen X, **e C, Pu K (2018) Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew Chem 130:4002–4006

    Article  Google Scholar 

  7. Guo L, Ge J, Wang P (2018) Polymer dots as effective phototheranostic agents. Photochem Photobiol 94:916–934

    Article  CAS  Google Scholar 

  8. Miao Q, **e C, Zhen X, Lyu Y, Duan H, Liu X, Jokerst JV, Pu K (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110

    Article  CAS  Google Scholar 

  9. Kim J, Lee TS (2018) Emission tuning with size-controllable polymer dots from a single conjugated polymer. Small 1702758:1–7

    Google Scholar 

  10. Jiang Y, Pu K (2018) Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv Biosys 1700262:1–10

    Google Scholar 

  11. Guo Y, Li Y, Yang Y, Tang S, Zhang Y, **ong L (2018) Multiscale imaging of brown adipose tissue in living mice/rats with fluorescent polymer dots. ACS Appl Mater Inter 10:20884–20896

    Article  CAS  Google Scholar 

  12. Zhu H, Fang Y, Zhen X, Wei N, Gao Y, Luo KQ, Xu C, Duan H, Ding D, Chen P, Pu K (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7:5118–5125

    Article  CAS  Google Scholar 

  13. Jiang Y, Pu K (2018) Multimodal biophotonics of semiconducting polymer nanoparticles. Accounts Chem Res 51:1840–1849

    Article  CAS  Google Scholar 

  14. Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, Patel NR, Davis B, Ferris C, O'Neal S, Zamboni W, Amiji MM, Coleman TP (2015) EGFR targeted theranostic nanoemulsion for image-guided ovarian cancer therapy. Pharm Res 32:2753–2763

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, Wang X, Yi T, Zhao X, Wei Y, Wang H, Zhao L, Zhou S (2018) Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 17:109

    Article  Google Scholar 

  16. Li L, Bi X, Sun H, Liu S, Yu M, Zhang Y, Weng S, Yang L, Bao Y, Wu J, Xu Y, Shen K (2018) Characterization of ovarian cancer cells and tissues by Fourier transform infrared spectroscopy. J Ovarian Res 11:64

    Article  Google Scholar 

  17. Viswanathan S, Rani C, Delerue-Matos C (2012) Ultrasensitive detection of ovarian cancer marker using immunoliposomes and gold nanoelectrodes. Anal Chim Acta 726:79–84

    Article  CAS  Google Scholar 

  18. Giri S, Shah SH, Batra K, Anu-Bajracharya, Jain V, Shukla H, Sekhon R, Rawal S (2016) Presentation and management of inguinal lymphadenopathy in ovarian cancer. Indian J Surg Oncol 7:436–440

    Article  Google Scholar 

  19. Zhang B, Chen F, Xu Q et al (2017) Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell 9:674–692

    Article  Google Scholar 

  20. Pu T, **ong L, Liu Q, Zhang M, Cai Q, Liu H, Sood AK, Li G, Kang Y, Xu C (2017) Delineation of retroperitoneal metastatic lymph nodes in ovarian cancer with near-infrared fluorescence imaging. Oncol Lett 14:2869–2877

    Article  Google Scholar 

  21. Ke C, Fang C, Yan J et al (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano 11:3166–3177

    Article  CAS  Google Scholar 

  22. Wang KK, Carr-Locke DL, Singh SK, Neumann H, Bertani H, Galmiche JP, Arsenescu RI, Caillol F, Chang KJ, Chaussade S, Coron E, Costamagna G, Dlugosz A, Ian Gan S, Giovannini M, Gress FG, Haluszka O, Ho KY, Kahaleh M, Konda VJ, Prat F, Shah RJ, Sharma P, Slivka A, Wolfsen HC, Zfass A (2015) Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence. United Eur Gastroenterol J 3:230–254

    Article  Google Scholar 

  23. Chene G, Chauvy L, Buenerd A, Moret S, Nadaud B, Beaufils E, le Bail-Carval K, Chabert P, Mellier G, Lamblin G (2017) In vivo confocal laser endomicroscopy during laparoscopy for gynecological surgery: a promising tool. J Gynecol Obstet Hum Reprod 46:565–569

    Article  CAS  Google Scholar 

  24. Bisschops R, Bergman J (2010) Probe-based confocal laser endomicroscopy: scientific toy or clinical tool? Endoscopy 42:487–489

    Article  CAS  Google Scholar 

  25. Wallace MB, Fockens P (2009) Probe-based confocal laser endomicroscopy. Gastroenterology 136:1509–1513

    Article  Google Scholar 

  26. Richardson C, Colavita P, Dunst C, Bagnato J, Billing P, Birkenhagen K, Buckley F, Buitrago W, Burnette J, Leggett P, McCollister H, Stewart K, Wang T, Zfass A, Severson P (2018) Real-time diagnosis of Barrett’s esophagus: a prospective, multicenter study comparing confocal laser endomicroscopy with conventional histology for the identification of intestinal metaplasia in new users. Surg Endosc. https://doi.org/10.1007/s00464-018-6420-9

  27. Wu L, Yu H, Zhou R, Luo J, Zhao J, Li Y, Wang K, Wang Y, Li H (2018) Probe-based confocal laser endomicroscopy for diagnosis of nasopharyngeal carcinoma in vivo. Laryngoscope. https://doi.org/10.1002/lary.27450

  28. **ong L (2016) Recent advances on near-infrared-emitting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] polymer dots for in vivo imaging. Gen Chem 2:99–106

    Article  Google Scholar 

  29. Cao F, Guo Y, Li Y et al (2018) Fast and accurate imaging of lymph node metastasis with multifunctional near-infrared polymer dots. Adv Funct Mater 1707174:1–18

    Google Scholar 

  30. Guo Y, Cao F, Li Y, ** doped and coupled doxorubicin for nucleus-targeted chemotherapy. J Mater Chem B 5:2921–2930

    Article  CAS  Google Scholar 

  31. **ong L, Cao F, Cao X, Guo Y, Zhang Y, Cai X (2015) Long-term-stable near-infrared polymer dots with ultrasmall size and narrow-band emission for imaging tumor vasculature in vivo. Bioconjug Chem 26:817–821

    Article  CAS  Google Scholar 

  32. Trottmann M, Stepp H, Sroka R, Heide M, Liedl B, Reese S, Becker AJ, Stief CG, Kölle S (2015) Probe-based confocal laser endomicroscopy (pCLE)–a new imaging technique for in situ localization of spermatozoa. J Biophotonics 8:415–421

    Article  Google Scholar 

  33. Wu G, Wang Z, Bian X, du X, Wei C (2014) Folate-modified doxorubicin-loaded nanoparticles for tumor-targeted therapy. Pharm Biol 52:978–982

    Article  CAS  Google Scholar 

  34. Ocak M, Gillman AG, Bresee J, Zhang L, Vlad AM, Müller C, Schibli R, Edwards WB, Anderson CJ, Gach HM (2015) Folate receptor-targeted multimodality imaging of ovarian cancer in a novel syngeneic mouse model. Mol Pharm 12:542–553

    Article  CAS  Google Scholar 

  35. Cao F, **ong L (2016) Folic acid functionalized PFBT fluorescent polymer dots for tumor imaging. Chinese J Chem 34:570–575

    Article  CAS  Google Scholar 

  36. Meining A, Shah RJ, Slivka A, Pleskow D, Chuttani R, Stevens PD, Becker V, Chen YK (2012) Classification of probe-based confocal laser endomicroscopy findings in pancreaticobiliary strictures. Endoscopy 44:251–257

    Article  CAS  Google Scholar 

  37. Han S, Woo S, Suh CH, Lee JJ (2018) Performance of pre-treatment 18F-fluorodeoxyglucose positron emission tomography/computed tomography for detecting metastasis in ovarian cancer : a systematic review and meta-analysis. J Gynecol Oncol 29

  38. Trottmann M, Stepp H, Sroka R, Heide M, Liedl B, Reese S, Becker AJ, Stief CG, Kölle S (2015) Probe-based confocal laser endomicroscopy (pCLE) - a new imaging technique for in situ localization of spermatozoa. J Biophotonics 8:415–421

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from the National Key R&D Program of China (2016YFC1303100), the National Natural Science Foundation of China (81671738, 81301261, and 21374059), the Shanghai Pujiang Project (13PJ1405000), and the Medicine-Engineering Cross Project of Shanghai Jiao Tong University (YG2016MS73).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin **ong.

Ethics declarations

Ethical Approval

All animal experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University (Shanghai, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 2723 kb)

ESM 2

(MP4 1806 kb)

ESM 3

(MP4 772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Guo, Y. et al. Fluorescent Polymer Dots for Tracking SKOV3 Cells in Living Mice with Probe-Based Confocal Laser Endomicroscopy. Mol Imaging Biol 21, 1026–1033 (2019). https://doi.org/10.1007/s11307-019-01343-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01343-4

Key words

Navigation