Log in

Quantitative [18F]FMISO PET Imaging Shows Reduction of Hypoxia Following Trastuzumab in a Murine Model of HER2+ Breast Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of [18F]fluoromisonidazole ([18F]FMISO)-positron emission tomography (PET) imaging as a metric for evaluating early response to trastuzumab therapy with histological validation in a murine model of HER2+ breast cancer.

Procedures

Mice with BT474, HER2+ tumors, were imaged with [18F]FMISO-PET during trastuzumab therapy. Pimonidazole staining was used to confirm hypoxia from imaging.

Results

[18F]FMISO-PET indicated significant decreases in hypoxia beginning on day 3 (P < 0.01) prior to changes in tumor size. These results were confirmed with pimonidazole staining on day 7 (P < 0.01); additionally, there was a significant positive linear correlation between histology and PET imaging (r 2 = 0.85).

Conclusions

[18F]FMISO-PET is a clinically relevant modality which provides the opportunity to (1) predict response to HER2+ therapy before changes in tumor size and (2) identify decreases in hypoxia which has the potential to guide subsequent therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hammond EM, Asselin MC, Forster D et al (2014) The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin Oncol (R Coll Radiol) 26:277–288

    Article  CAS  Google Scholar 

  2. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  CAS  PubMed  Google Scholar 

  3. Gruber G, Greiner RH, Hlushchuk R et al (2004) Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res 6:R191–R198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goel S, Duda DG, Xu L et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mankoff DA, Dunnwald LK, Partridge SC, Specht JM (2009) Blood flow-metabolism mismatch: good for the tumor, bad for the patient. Clin Cancer Res 15:5294–5296

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hill RP, Stanley JA (1975) The response of hypoxic B16 melanoma cells to in vivo treatment with chemotherapeutic agents. Cancer Res 35:1147–1153

    CAS  PubMed  Google Scholar 

  7. Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41:73–81

    CAS  PubMed  Google Scholar 

  8. Generali D, Berruti A, Brizzi MP et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12:4562–4568

    Article  CAS  PubMed  Google Scholar 

  9. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber DC, Tille JC, Combescure C et al (2012) The prognostic value of expression of HIF1alpha, EGFR and VEGF-A, in localized prostate cancer for intermediate- and high-risk patients treated with radiation therapy with or without androgen deprivation therapy. Radiat Oncol 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  11. Society AC (2016) Cancer facts & figures 2016. American Cancer Society, Atlanta

    Google Scholar 

  12. Boekhout AH, Beijnen JH, Schellens JH (2011) Trastuzumab. Oncologist 16:800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorace AG, Quarles CC, Whisenant JG et al (2016) Trastuzumab improves tumor perfusion and vascular delivery of cytotoxic therapy in a murine model of HER2+ breast cancer: preliminary results. Breast Cancer Res Treat 155:273–284

    Article  CAS  PubMed  Google Scholar 

  14. Izumi Y, Xu L, di Tomaso E et al (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Abramson RG, Arlinghaus LR et al (2015) Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Investig Radiol 50:195–204

    Article  CAS  Google Scholar 

  16. Yankeelov TE, Abramson RG, Quarles CC (2014) Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol 11:670–680

    Article  PubMed  PubMed Central  Google Scholar 

  17. Masaki Y, Shimizu Y, Yoshioka T et al (2015) The accumulation mechanism of the hypoxia imaging probe “FMISO” by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci Rep 5:16802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muzi M, Peterson LM, O’Sullivan JN et al (2015) 18F-fluoromisonidazole quantification of hypoxia in human cancer patients using image-derived blood surrogate tissue reference regions. J Nucl Med 56:1223–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rajendran JG, Krohn KA (2015) F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 45:151–162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hatano T, Zhao S, Zhao Y et al (2013) Biological characteristics of intratumoral [F-18]fluoromisonidazole distribution in a rodent model of glioma. Int J Oncol 42:823–830

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cho H, Ackerstaff E, Carlin S et al (2009) Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia 11:247–259, 242p following 259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whisenant JG, Peterson TE, Fluckiger JU et al (2013) Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO MicroPET studies in a murine model of HER2+ breast cancer. Mol Imaging Biol 15:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oehler C, O’Donoghue JA, Russell J et al (2011) 18F-fluromisonidazole PET imaging as a biomarker for the response to 5,6-dimethylxanthenone-4-acetic acid in colorectal xenograft tumors. J Nucl Med 52:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arvold ND, Heidari P, Kunawudhi A et al (2016) Tumor hypoxia response after targeted therapy in EGFR-mutant non-small cell lung cancer: proof of concept for FMISO-PET. Technol Cancer Res Treat 15:234–242

    Article  PubMed  Google Scholar 

  26. Theze B, Bernards N, Beynel A et al (2015) Monitoring therapeutic efficacy of sunitinib using [(18)F]FDG and [(18)F]FMISO PET in an immunocompetent model of luminal B (HER2-positive)-type mammary carcinoma. BMC Cancer 15:534

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shah C, Miller TW, Wyatt SK et al (2009) Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res 15:4712–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kramer-Marek G, Gijsen M, Kiesewetter DO et al (2012) Potential of PET to predict the response to trastuzumab treatment in an ErbB2-positive human xenograft tumor model. J Nucl Med 53:629–637

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Knopp MV (2011) Quantifying tumor vascular heterogeneity with dynamic contrast-enhanced magnetic resonance imaging: a review. J Biomed Biotechnol 2011:732848

    PubMed  PubMed Central  Google Scholar 

  30. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  31. Hudson JM, Williams R, Tremblay-Darveau C et al (2015) Dynamic contrast enhanced ultrasound for therapy monitoring. Eur J Radiol 84:1650–1657

    Article  PubMed  Google Scholar 

  32. Balleyguier C, Opolon P, Mathieu MC et al (2009) New potential and applications of contrast-enhanced ultrasound of the breast: own investigations and review of the literature. Eur J Radiol 69:14–23

    Article  PubMed  Google Scholar 

  33. Hardee ME, Eapen RJ, Rabbani ZN et al (2009) Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu + tumors. Cancer Chemother Pharmacol 63:219–228

    Article  CAS  PubMed  Google Scholar 

  34. Li XF, O’Donoghue JA (2008) Hypoxia in microscopic tumors. Cancer Lett 264:172–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cleeland CS, Allen JD, Roberts SA et al (2012) Reducing the toxicity of cancer therapy: recognizing needs, taking action. Nat Rev Clin Oncol 9:471–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National Cancer Institute for support through U01CA174706, R01CA138599, R01 CA158079, U01CA142565, and 5T32CA093240. T.E.Y. is a CPRIT Scholar and the W.A. “Tex” Moncrief Professor of Computational Oncology at The University of Texas at Austin. We would like to thank Drs. Michael Freeman and Melinda Sanders for their help with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna G. Sorace.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorace, A.G., Syed, A.K., Barnes, S.L. et al. Quantitative [18F]FMISO PET Imaging Shows Reduction of Hypoxia Following Trastuzumab in a Murine Model of HER2+ Breast Cancer. Mol Imaging Biol 19, 130–137 (2017). https://doi.org/10.1007/s11307-016-0994-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0994-1

Key words

Navigation