Log in

Chemical Exchange Saturation Transfer (CEST) MR Technique for Liver Imaging at 3.0 Tesla: an Evaluation of Different Offset Number and an After-Meal and Over-Night-Fast Comparison

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study seeks to explore whether chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can detect liver composition changes between after-meal and over-night-fast statuses.

Procedures

Fifteen healthy volunteers were scanned on a 3.0-T human MRI scanner in the evening 1.5–2 h after dinner and in the morning after over-night (12-h) fasting. Among them, seven volunteers were scanned twice to assess the scan–rescan reproducibility. Images were acquired at offsets (n = 41, increment = 0.25 ppm) from −5 to 5 ppm using a turbo spin echo (TSE) sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified with the asymmetric magnetization transfer ratio (MTRasym) at 3.5 ppm and the total MTRasym integrated from 0.5 to 1.5 ppm from the corrected Z-spectrum, respectively. To explore scan time reduction, CEST images were reconstructed using 31 offsets (with 20 % time reduction) and 21 offsets (with 40 % time reduction), respectively.

Results

For reproducibility, GlycoCEST measurements in 41 offsets showed the smallest scan-rescan mean measurements variability, indicated by the lowest mean difference of −0.049 % (95 % limits of agreement, −0.209 to 0.111 %); for APTw, the smallest mean difference was found to be 0.112 % (95 % limits of agreement, −0.698 to 0.921 %) in 41 offsets. Compared with after-meal, both GlycoCEST measurement and APTw measurement under different offset number decreased after 12-h fasting. However, as the offsets number decreased (41 offsets vs. 31 offsets vs. 21 offsets), GlycoCEST map and APTw map became more heterogeneous and noisier.

Conclusion

Our results show that CEST liver imaging at 3.0 T has high sensitivity for fasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wallace K, Burt AD, Wright MC (2008) Liver fibrosis. Biochem J 411:1–18

    Article  CAS  PubMed  Google Scholar 

  2. Patel K, Shackel NA (2008) Current status of fibrosis markers. Curr Opin Gastroenterol 30:253–259

    Article  Google Scholar 

  3. Anania C, Pacifico L, Ferraro F et al (2011) Aspartate transaminase to platelet ratio index (APRI) to assess liver fibrosis in patients with chronic liver disease. Hepat Mon 11:479–480

    PubMed  PubMed Central  Google Scholar 

  4. Tatsumi C, Kudo M, Ueshima K et al (2008) Noninvasive evaluation of hepatic fibrosis using serum fibrotic markers, transient elastography (FibroScan) and real-time tissue elastography. Intervirology 1(Suppl):27–33

    Article  Google Scholar 

  5. Sy S, Huang S, Wang YX et al (2010) Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast. Phys Med Biol 55:7587–7596

    Article  PubMed  Google Scholar 

  6. Ligabue G, Besutti G, Scaglioni R et al (2013) MR quantitative biomarkers of non-alcoholic fatty liver disease: technical evolutions and future trends. Quant Imaging Med Surg 3:192–195

    PubMed  PubMed Central  Google Scholar 

  7. Janes CH, Lindor KD (1993) Outcome of patients hospitalized for complications after outpatient liver biopsy. Ann Intern Med 118:96–98

    Article  CAS  PubMed  Google Scholar 

  8. Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 344:495–500

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Lal B, Wilson DA et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126

    Article  PubMed  Google Scholar 

  10. Zhou J, Payen J, Wilson DA et al (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  11. Yuan J, Chen S, King AD et al (2014) Amide proton transfer-weighted imaging of the head and neck at 3 T: a feasibility study on healthy human subjects and patients with head and neck cancer. NMR Biomed 27:1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim M, Chan Q, Anthony MP et al (2011) Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3 T: feasibility and initial experience. NMR Biomed 24:1137–1144

    Article  CAS  PubMed  Google Scholar 

  13. Haneder S, Apprich SR, Schmitt B et al (2013) Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol 23:861–868

    Article  PubMed  Google Scholar 

  14. van Zijl PC, Jones CK, Ren J et al (2007) MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci USA 104:4359–4364

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan KW, McMahon MT, Kato Y et al (2012) Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68:1764–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walker-Samuel S, Ramasawmy R, Torrealdea F et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19:1067–1072

    Article  CAS  PubMed  Google Scholar 

  18. Jones CK, Schlosser MJ, van Zijl PC et al (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56:585–592

    Article  PubMed  Google Scholar 

  19. Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128

    Article  PubMed  Google Scholar 

  20. Zhou J, Hong X, Zhao X et al (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–327

    Article  CAS  PubMed  Google Scholar 

  21. Ren J, Trokowski R, Zhang S et al (2008) Imaging the tissue distribution of glucose in livers using a PARACEST sensor. Magn Reson Med 60:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sagiyama K, Zhang S, Dimitrov I et al (2014) In vivo monitoring of liver glycogen by chemical exchange saturation transfer imaging (GlycoCEST) in live mice. Proc Int Soc Magn Reson Med 22:0762

    Google Scholar 

  23. Bawden SJ, Mougin O, Hunter K et al (2014) Simultaneously measuring glycogen and lipid levels using localized CEST spectroscopy at 3T. Proc Intl Soc Mag Reson Med 22:3159

    Google Scholar 

  24. Deng M, Zhao F, Yuan J et al (2012) Liver T1ρ MRI measurement in healthy human subjects at 3 T: a preliminary study with a two-dimensional fast-field echo sequence. Br J Radiol 85:e590–e595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ouwerkerk R, Pettigrew RI, Gharib AM (2012) Liver metabolite concentrations measured with 1H MR spectroscopy. Radiology 265:565–575

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York, pp 1–31

    Google Scholar 

  27. Zhao F, Wang YX, Yuan J et al (2012) MR T1ρ as an imaging biomarker for monitoring liver injury progression and regression: an experimental study in rats with carbon tetrachloride intoxication. Eur Radiol 22:1709–1716

    Article  PubMed  Google Scholar 

  28. Zhao F, Yuan J, Deng M et al (2013) Further exploration of MRI techniques for liver T1rho quantification. Quant Imaging Med Surg 3:308–315

    PubMed  PubMed Central  Google Scholar 

  29. Wang YX, Yuan J, Chu ES et al (2011) T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology 259:712–719

    Article  PubMed  Google Scholar 

  30. Wang YX, Yuan J (2014) Evaluation of liver fibrosis with T1ρ MR imaging. Quant Imaging Med Surg 4:152–155

    PubMed  PubMed Central  Google Scholar 

  31. Allkemper T, Sagmeister F, Cicinnati V et al (2014) Evaluation of fibrotic liver disease with whole-liver T1ρ MR imaging: a feasibility study at 1.5 T. Radiology 271:408–415

    Article  PubMed  Google Scholar 

  32. Mannelli L, Wilson GJ, Dubinsky TJ et al (2012) Assessment of the liver strain among cirrhotic and normal livers using tagged MRI. J Magn Reson Imaging 36:1490–1495

    Article  PubMed  Google Scholar 

  33. Salameh N, Larrat B, Abarca-Quinones J et al (2009) Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 253:90–97

    Article  PubMed  Google Scholar 

  34. Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50:17–35

    Article  PubMed  Google Scholar 

  35. Lu PX, Huang H, Yuan J et al (2014) Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study. PLoS One 9, e113846

  36. Yoon JH, Lee JM, Baek JH et al (2014) Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI. J Comput Assist Tomogr 38:110–116

    Article  PubMed  Google Scholar 

  37. Jones CK, Huang A, Xu J et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124

    Article  PubMed  Google Scholar 

  38. ** T, Wang P, Zong X, Kim SG (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear over hauser effect at 9.4 T. Magn Reson Med 69(3):760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heo HY, Zhang Y, Lee DH et al (2015) Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 T. Magn Reson Med. doi:10.1002/mrm.25581

    Google Scholar 

  40. Lu J, Zhou J, Cai C et al (2015) Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression. Magn Reson Med 73:1615–1622

  41. Pagadala M, Kasumov T, McCullough AJ et al (2012) Role of ceramides in nanalcoholic fatty liver disease. Trends Endocrinol Metab 23:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li L, Tang X, Taylor KG et al (2002) Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy. Biophys J 82:2067–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao F, Deng M, Yuan J et al (2012) Experimental evaluation of accelerated T1rho relaxation quantification in human liver using limited spin-lock times. Korean J Radiol 13:736–742

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang YX, Zhao F, Yuan J et al (2013) Accelerated T1rho relaxation quantification in intervertebral disc using limited spin-lock times. Quant Imaging Med Surg 3:54–58

    PubMed  PubMed Central  Google Scholar 

  45. Yuan J, Zhao F, Griffith JF et al (2012) Optimized efficient liver T(1ρ) map** using limited spin lock times. Phys Med Biol 57:1631–1640

    Article  PubMed  Google Scholar 

  46. Zhu Y, Zhang Q, Liu Q et al (2015) PANDA-T1ρ: integrating principal component analysis and dictionary learning for fast T1ρ map**. Magn Reson Med 37:263–272

  47. Kim M, Gillen J, Landman BA et al (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun PZ, Benner T, Kumar A, Sorensen AG (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841

    Article  PubMed  Google Scholar 

  49. Zaiss M, Schmitt B, Bachert P (2011) Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson 211:149–155

    Article  CAS  PubMed  Google Scholar 

  50. Zaiss M, Bachert P (2013) Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol 58:R221–R269

    Article  PubMed  Google Scholar 

  51. Pang Y, Jiang X, Zhang X (2014) Sparse parallel transmission on randomly perturbed spiral k-space trajectory. Quant Imaging Med Surg 4:106–111

    PubMed  PubMed Central  Google Scholar 

  52. Pang Y, Yu B, Zhang X (2014) Enhancement of the low resolution image quality using randomly sampled data for multi-slice MR imaging. Quant Imaging Med Surg 4:136–144

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was partially by grants from the Research Grants Council of the Hong Kong SAR (Project No. 476313 and Project No. SEG_CUHK02) and the National Institutes of Health (R01EB009731, R01CA166171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yì-**áng J. Wáng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M., Chen, SZ., Yuan, J. et al. Chemical Exchange Saturation Transfer (CEST) MR Technique for Liver Imaging at 3.0 Tesla: an Evaluation of Different Offset Number and an After-Meal and Over-Night-Fast Comparison. Mol Imaging Biol 18, 274–282 (2016). https://doi.org/10.1007/s11307-015-0887-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0887-8

Key words

Navigation