Log in

Simultaneous [99mTc]TRODAT-1 and [123I]ADAM Brain SPECT in Nonhuman Primates

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study examined the feasibility of simultaneous dopamine and serotonin transporter imaging using [123I]ADAM and [99mTc]TRODAT-1 single photon emission computed tomography (SPECT).

Procedures

Simultaneous [123I]ADAM (185 MBq) and [99mTc]TRODAT-1 (740 MBq) SPECT was performed in three age-matched female Formosan rock monkeys. An asymmetric energy window was used for dual, and symmetric energy windows were used for single-isotope imaging. Oral fluoxetine (20 mg) and intravenous methylphenidate HCl (1 mg/kg) were given 24 h and 10 min, respectively, before dual-isotope SPECT to test imaging specificities of [123I]ADAM and [99mTc]TRODAT-1.

Results

Comparable image quality and uptake ratios between dual- and single-isotope SPECT scans were found. Dual-isotope SPECT in fluoxetine-pretreated monkeys showed decreased uptake of [123I]-ADAM, but not of [99mTc]TRODAT-1. Dual-isotope SPECT in methylphenidate-pretreated monkeys showed decreased [99mTc]TRODAT-1 uptake without affecting [123I]-ADAM uptake.

Conclusion

Simultaneous [123I]-ADAM and [99mTc]TRODAT-1 SPECT appears promising in nonhuman primates and may provide a suitable preclinical model with further clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Jellinger K (1990) New developments in the pathology of Parkinson’s disease. Adv Neurol 53:1–16

    PubMed  CAS  Google Scholar 

  2. Uhl GR, Walther D, Mash D, Fauchaux B, Javoy-Agid F (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35:494–498

    Article  PubMed  CAS  Google Scholar 

  3. Graybiel AM, Hirsch EC, Agid Y (1990) The nigrostriatal system in Parkinson’s disease. Adv Neurol 53:17–29

    PubMed  CAS  Google Scholar 

  4. Booij J, Tissingh G, Winogrodzka A, van Royen EZ (1999) Imaging of dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 26:171–182

    Article  PubMed  CAS  Google Scholar 

  5. Raisman R, Cach R, Agid Y (1986) Parkinson's disease: decreased density of 3H-imipramine and 3H-paroxetine binding sites in putamen. Neurology 36:556–560

    PubMed  CAS  Google Scholar 

  6. Halliday GM, Blumbergs PC, Cotton RG et al (1990) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res 510:104–107

    Article  PubMed  CAS  Google Scholar 

  7. Guttman M, Boileau I, Warsh J et al (2007) Brain serotonin transporter binding in non-depressed patients with Parkinson's disease. Eur J Neurol 14:523–528

    Article  PubMed  CAS  Google Scholar 

  8. Karlsen KH, Larsen JP, Tandberg E, Maeland JM (1999) Influence of clinical and demographic variables on quality of life in patients with Parkinson’s disease. J Neurol Neurosurg Psych 66:431–435

    Article  CAS  Google Scholar 

  9. Shulman LM, Taback RL, Bean J, Weiner WJ (2001) Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov Disord 16:507–510

    Article  PubMed  CAS  Google Scholar 

  10. Menza MA, Robertson-Hoffman DE, Bonapace AS (1993) Parkinson’s disease and anxiety: comorbidity with depression. Biol Psych 34:465–470

    Article  CAS  Google Scholar 

  11. Kostic VS, Lecic D, Doder M et al (1996) Prolactin and cortisol responses to fennfluramine in Parkinson’s disease. Biol Psych 40:769–775

    Article  CAS  Google Scholar 

  12. McCance-Katz EF, Marek KL, Price LH (1992) Serotonergic dysfunction in depression associated with Parkinson’s disease. Neurology 42:1813–1814

    PubMed  CAS  Google Scholar 

  13. Lane RM (1998) SSROI-induced extrapyramidal side-effects and akinesia: implications for treatment. J Psychopharmacol 12:192–214

    Article  PubMed  CAS  Google Scholar 

  14. Uhl GR (1992) Neurotransmitter transporters (plus): a promising new gene family. Trends Neurosci 15:265–268

    Article  PubMed  CAS  Google Scholar 

  15. Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40:288–295

    PubMed  CAS  Google Scholar 

  16. Mozley PD, Schneider JS, Acton PD et al (2001) Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med 41:584–589

    Google Scholar 

  17. Oya S, Choi SR, Hou C et al (2000) 2-((2-((Dimethylamino) methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. Nucl Med Biol 27:249–254

    Article  PubMed  CAS  Google Scholar 

  18. Dresel SHJ, Kung MP, Huang XF et al (2006) Simultaneous SPECT studies of pre- and post-synaptic dopamine binding sites in baboons. J Nucl Med 33:87–92

    Article  Google Scholar 

  19. El Fakhri G, Habert MO, Maksud P et al (2006) Quantitative simultaneous (99m)Tc- ECD/123I-FP-CIT SPECT in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Molec Imaging 33:87–92

    Article  Google Scholar 

  20. Huang W-S, Ma KH, Cgeng CY et al (2004) Imaging serotonin transporters with 123I-ADAM brain SPECT in healthy non-human primates. Nucl Med Commun 25:515–519

    Article  PubMed  Google Scholar 

  21. Dresel SHJ, Kung MP, Huang XF et al (1999) In vivo imaging of serotonin transporters with [Tc-99m]TRODAT-1 in non-human primates. Eur J Nucl Med 26:342–347

    Article  PubMed  CAS  Google Scholar 

  22. Ma KH, Huang WS, Chen CH et al (2002) Dual SPECT of dopamine system using [99mTc]TRODAT-1 and [123I]IBZM in normal and 6-OHDA-lesioned Formosan rock monkeys. Nucl Med Biol 29:561–567

    Article  PubMed  CAS  Google Scholar 

  23. Ye XX, Chen JC, Liu RS et al (2004) Microautoradiography of [123]ADAM in mice treated with fluoxetine and serotonin reuptake inhibitors. Nucl Med Biol 31:557–562

    Article  PubMed  CAS  Google Scholar 

  24. Swanson RL, Newberg AB, Acton PD et al (2005) Differences in [99mTc]-TRODAT-1 SPECY binding to dopamine transporters in patients with multiple system atrophy and Parkinson’s disease. Eur J Nucl Med Imaging 32:302–307

    Article  CAS  Google Scholar 

  25. Huang WS, Lee MS, Lin JC et al (2004) Usefulness of brain [99mTc]-TRODAT-1 SPET for the evaluation of Parkinson’s disease. Eur J Nucl Med Molec Imaging 31:155–161

    Article  Google Scholar 

  26. Shih MC, De Andrade LAF, Amaro E et al (2007) Higher nigrostriatal dopamine neuron loss in early than late onset Parkinson’s disease? A [99mTc]-TRODAT-1 SPECT study. Mov Disord 22:863–866

    Article  PubMed  Google Scholar 

  27. Acton PD, Choi S, Hou C et al (2001) Quantification of serotonin transporters in nonhuman primates using [123I] ADAM and SPECT. J Nucl Med 42:1556–1562

    PubMed  CAS  Google Scholar 

  28. Catafou AM, Perez V, Penengo MM et al (2005) SPECT of serotonin transporters using 123I-ADAM: optimal imaging time after bolus injection and long-term test–retest in health volunteers. J Nucl Med 46:1301–1309

    Google Scholar 

  29. Newberg AB, Amsterdam JD, Wintering N et al (2005) [123I] ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med 46:973–977

    PubMed  CAS  Google Scholar 

  30. Wade PR, Chen J, Jaffe B et al (1996) Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 16:2352–2364

    PubMed  CAS  Google Scholar 

  31. Lesch KP, Wolozin BL, Murphy DL, Reiderer P (1993) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurosci 60:2319–2322

    CAS  Google Scholar 

  32. Lee SL, Fanburg BL (1986) Serotonin uptake by bovine pulmonary artery endothelial cells in culture. I. Characterization. Am J Physiol 250:C761–C765

    PubMed  CAS  Google Scholar 

  33. Lu NZ, Eshleman AJ, Janowsky A, Bethea CL (2003) Ovarian steroid regulation of serotonin reuptake transporter (SERT) binding, distribution, and function in female macaques. Mol Psych 8:353–360

    Article  CAS  Google Scholar 

  34. Pecins-Thompson M, Brown NA, Bethea CL (1998) Regulation of serotonin re-uptake transporter mRNA expression by ovarian steroids in rhesus macaques. Brain Res Mol Brain Res 53:120–129

    Article  PubMed  CAS  Google Scholar 

  35. Black NF, McJames S, Rust TC, Kadrmas DJ (2008) Evaluation of rapid dual-tracer (62)Cu-PTSM + (62)Cu-ATSM PET in dogs with spontaneously occurring tumors. Phys Med Biol 53:217–232

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute of Nuclear Energy Research and National Science Council under grants 970945L, NSC94-2314-B016-042, and 97-2623-7-016-001-NU respectively. We thank Mr Jiang-Cherng Perng and Ms Tzu-Jou Chung for their technical help and preparation of the monkeys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Sheng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, KH., Lee, JK., Huang, SY. et al. Simultaneous [99mTc]TRODAT-1 and [123I]ADAM Brain SPECT in Nonhuman Primates. Mol Imaging Biol 11, 253–262 (2009). https://doi.org/10.1007/s11307-009-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0197-0

Key words

Navigation