Log in

Non-invasive urinary metabolomic profiles discriminate biliary atresia from infantile hepatitis syndrome

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Neonatal cholestatic disorders are a group of hepatobiliary diseases occurring in the first 3 months of life. The most common causes of neonatal cholestasis are infantile hepatitis syndrome (IHS) and biliary atresia (BA). The clinical manifestations of the two diseases are too similar to distinguish them. However, early detection is very important in improving the clinical outcome of BA. Currently, a liver biopsy is the only proven and effective method used to differentially diagnose these two similar diseases in the clinic. However, this method is invasive. Therefore, sensitive and non-invasive biomarkers are needed to effectively differentiate between BA and IHS. We hypothesized that urinary metabolomics can produce unique metabolite profiles for BA and IHS.

Objectives

The aim of this study was to characterize urinary metabolomic profiles in infants with BA and IHS, and to identify differences among infants with BA, IHS, and normal controls (NC).

Methods

Urine samples along with patient characteristics were obtained from 25 BA, 38 IHS, and 38 NC infants. A non-targeted gas chromatography–mass spectrometry (GC–MS) metabolomics method was used in conjunction with orthogonal partial least squares discriminant analysis (OPLS-DA) to explore the metabolomic profiles of BA, IHS, and NC infants.

Results

In total, 41 differentially expressed metabolites between BA vs. NC, IHS vs. NC, and BA vs. IHS were identified. N-acetyl-d-mannosamine and alpha-aminoadipic acid were found to be highly accurate at distinguishing between BA and IHS.

Conclusions

BA and IHS infants have specific urinary metabolomic profiles. The results of our study underscore the clinical potential of metabolomic profiling to uncover metabolic changes that could be used to discriminate BA from IHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abukawa, D., Ohura, T., Iinuma, K., & Tazawa, Y. (2001). An undescribed subset of neonatal intrahepatic cholestasis associated with multiple hyperaminoacidemia. Hepatology Research, 21, 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Al Mardini, H., Douglass, A., & Record, C. (2006). Amino acid challenge in patients with cirrhosis and control subjects: Ammonia, plasma amino acid and EEG changes. Metabolic Brain Disease, 21, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Allen, M. B., & Walker, D. G. (1980). The isolation and preliminary characterization of N-acetyl-D-glucosamine kinase from rat kidney and liver. Biochemical Journal, 185, 565–575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Assimakopoulos, S. F., Grintzalis, K., Thomopoulos, K. C., Papapostolou, I., Georgiou, C. D., Gogos, C., et al. (2008). Plasma superoxide radical in jaundiced patients and role of xanthine oxidase. The American Journal of the Medical Sciences, 336, 230–236.

    Article  PubMed  Google Scholar 

  • Attallah, A. M., Toson el, S. A., El-Waseef, A. M., Abo-Seif, M. A., Omran, M. M., & Shiha, G. E. (2006). Discriminant function based on hyaluronic acid and its degrading enzymes and degradation products for differentiating cirrhotic from non-cirrhotic liver diseased patients in chronic HCV infection. Clinica Chimica Acta, 369, 66–72.

    Article  CAS  Google Scholar 

  • Balistreri, W. F., Grand, R., Hoofnagle, J. H., Suchy, F. J., Ryckman, F. C., Perlmutter, D. H., et al. (1996) Biliary atresia: Current concepts and research directions. Summary of a symposium. Hepatology 23, 1682–1692.

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu, A., Alfaro, A., Garcia, M., & Fernandez, E. (2009). Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage, 47, 1172–1176.

    Article  PubMed  Google Scholar 

  • Bijl, E. J., Bharwani, K. D., Houwen, R. H., & de Man, R. A. (2013). The long-term outcome of the Kasai operation in patients with biliary atresia: A systematic review. The Netherlands Journal of Medicine, 71, 170–173.

    PubMed  CAS  Google Scholar 

  • Blemings, K. P., Crenshaw, T. D., Swick, R. W., & Benevenga, N. J. (1994). Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. Journal of Nutrition, 124, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanos, D. P., Baum, H., Okamoto, M., Montalto, P., Sharma, U. C., Rigopoulou, E. I., et al. (2005). Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology, 42, 458–465.

    Article  PubMed  CAS  Google Scholar 

  • Broadhurst, D., & Kell, D. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.

    Article  CAS  Google Scholar 

  • Cuzzolin, L., Mangiarotti, P., & Fanos, V. (2001). Urinary PGE(2) concentrations measured by a new EIA method in infants with urinary tract infections or renal malformations. Prostaglandins Leukot Essent Fatty Acids, 64, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, M., Ong, E., Sharif, K., Alizai, N., McClean, P., Hadzic, N., et al. (2011). Biliary atresia in England and Wales: Results of centralization and new benchmark. Journal of Pediatric Surgery, 46, 1689–1694.

    Article  PubMed  Google Scholar 

  • Dong, S., Zhan, Z. Y., Cao, H. Y., Wu, C., Bian, Y. Q., Li, J. Y., et al. (2017). Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World Journal of Gastroenterology, 23, 2771–2784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

    Article  PubMed  CAS  Google Scholar 

  • Fanos, V., Antonucci, R., Barberini, L., & Atzori, L. (2012). Urinary metabolomics in newborns and infants. Advances in Clinical Chemistry, 58, 193–223.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2, 155–168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finelli, C., & Tarantino, G. (2017). Retraction: Nonalcoholic fatty liver disease, diet and gut microbiota. EXCLI Journal, 16, 1164.

    PubMed  PubMed Central  Google Scholar 

  • Forton, D. M., Hamilton, G., Allsop, J. M., Grover, V. P., Wesnes, K., O’Sullivan, C., et al. (2008). Cerebral immune activation in chronic hepatitis C infection: A magnetic resonance spectroscopy study. Journal of Hepatology, 49, 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Fouquet, V., Alves, A., Branchereau, S., Grabar, S., Debray, D., Jacquemin, E., et al. (2005). Long-term outcome of pediatric liver transplantation for biliary atresia: A 10-year follow-up in a single center. Liver Transplantation, 11, 152–160.

    Article  PubMed  Google Scholar 

  • Fujita, T., Hada, T., & Higashino, K. (1999). Origin of D- and L-pipecolic acid in human physiological fluids: A study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clinica Chimica Acta, 287, 145–156.

    Article  CAS  Google Scholar 

  • Furukawa, K., Ohkawa, Y., Yamauchi, Y., Hamamura, K., Ohmi, Y., & Furukawa, K. (2012). Fine tuning of cell signals by glycosylation. Journal of Biochemistry, 151, 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Gou, X., Tao, Q., Feng, Q., Peng, J., Sun, S., Cao, H., et al. (2013). Urinary metabonomics characterization of liver fibrosis induced by CCl(4) in rats and intervention effects of **a Yu Xue Decoction. Journal of Pharmaceutical and Biomedical Analysis, 74, 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Grover, V. P., Pavese, N., Koh, S. B., Wylezinska, M., Saxby, B. K., Gerhard, A., et al. (2012). Cerebral microglial activation in patients with hepatitis C: In vivo evidence of neuroinflammation. Journal of Viral Hepatitis, 19, e89-96.

    Article  PubMed  Google Scholar 

  • Gu, H., Zhang, P., Zhu, J., & Raftery, D. (2015). Globally optimized targeted mass spectrometry: Reliable metabolomics analysis with broad coverage. Analytical Chemistry, 87, 12355–12362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu, H. W., Carroll, P. A., Du, J. H., Zhu, J. J., Neto, F. C., Eisenman, R. N., et al. (2016). Quantitative method to investigate the balance between metabolism and proteome biomass: Starting from glycine. Angewandte Chemie-International Edition, 55, 15646–15650.

    Article  PubMed  CAS  Google Scholar 

  • Guyot, C., & Stieger, B. (2011). Interaction of bile salts with rat canalicular membrane vesicles: Evidence for bile salt resistant microdomains. Journal of Hepatology, 55, 1368–1376.

    Article  PubMed  CAS  Google Scholar 

  • Harms, E., Kreisel, W., Morris, H. P., & Reutter, W. (1973). Biosynthesis of N-acetylneuraminic acid in Morris hepatomas. European Journal of Biochemistry, 32, 254–262.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, J. L., Davenport, M., & Kelly, D. A. (2009). Biliary atresia. Lancet, 374, 1704–1713.

    Article  PubMed  Google Scholar 

  • Higashino, K., Fujioka, M., & Yamamura, Y. (1971). The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse. Archives of Biochemistry and Biophysics, 142, 606–614.

    Article  PubMed  CAS  Google Scholar 

  • Hinderlich, S., Stasche, R., Zeitler, R., & Reutter, W. (1997). A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Journal of Biological Chemistry, 272, 24313–24318.

    Article  PubMed  CAS  Google Scholar 

  • Holecek, M. (2017). Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition, 41, 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Hutzler, J., & Dancis, J. (1983). The determination of pipecolic acid: Method and results of hospital survey. Clinica Chimica Acta, 128, 75–82.

    Article  CAS  Google Scholar 

  • Kawasaki, H., Hori, T., Nakajima, M., & Takeshita, K. (1988). Plasma levels of pipecolic acid in patients with chronic liver disease. Hepatology, 8, 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, S., & Gopalan, S. (2007). Role of branched-chain amino acids in liver disease: The evidence for and against. Current Opinion in Clinical Nutrition and Metabolic Care, 10, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, K., & Tsuiki, S. (1973). Purification and properties of UDP-N-acetylglucosamine 2′-epimerase from rat liver. Biochimica et Biophysica Acta, 327, 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kullak-Ublick, G. A., & Meier, P. J. (2000). Mechanisms of cholestasis. Clinical Liver Disease, 4, 357–385.

    Article  CAS  Google Scholar 

  • Lee, A., Chick, J. M., Kolarich, D., Haynes, P. A., Robertson, G. R., Tsoli, M., et al. (2011). Liver membrane proteome glycosylation changes in mice bearing an extra-hepatic tumor. Molecular & Cellular Proteomics, 10, M900538MCP200.

    Article  CAS  Google Scholar 

  • Lee, J. H., Seo, D. W., Lee, Y. S., Kim, S. T., Mun, C. W., Lim, T. H., et al. (1999). Proton magnetic resonance spectroscopy (1H-MRS) findings for the brain in patients with liver cirrhosis reflect the hepatic functional reserve. The American Journal of Gastroenterology, 94, 2206–2213.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. W., Shan, J. J., Lin, L. L., **e, T., He, L. L., Yang, Y., et al. (2017). Disturbance in plasma metabolic profile in different types of human cytomegalovirus-induced liver injury in infants. Scientific Reports, 7, 15696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majer, F., Trnka, L., Vitek, L., Jirkovska, M., Marecek, Z., & Smid, F. (2007). Estrogen-induced cholestasis results in a dramatic increase of b-series gangliosides in the rat liver. Biomedical Chromatography, 21, 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Mamas, M., Dunn, W. B., Neyses, L., & Goodacre, R. (2011). The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 85, 5–17.

    Article  PubMed  CAS  Google Scholar 

  • Marchesini, G., Bianchi, G., Merli, M., Amodio, P., Panella, C., Loguercio, C., et al. (2003). Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: A double-blind, randomized trial. Gastroenterology, 124, 1792–1801.

    Article  PubMed  CAS  Google Scholar 

  • McKiernan, P. (2012). Neonatal jaundice. Clinics and Research in Hepatology and Gastroenterology, 36, 253–256.

    Article  PubMed  Google Scholar 

  • McKiernan, P. J. (2002). Neonatal cholestasis. Seminars in Neonatology, 7, 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Memon, N., Weinberger, B. I., Hegyi, T., & Aleksunes, L. M. (2016). Inherited disorders of bilirubin clearance. Pediatric Research, 79, 378–386.

    Article  PubMed  CAS  Google Scholar 

  • Muto, Y., Sato, S., Watanabe, A., Moriwaki, H., Suzuki, K., Kato, A., et al. (2006). Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatology Research, 35, 204–214.

    PubMed  CAS  Google Scholar 

  • Nicholson, J. K. (2006). Global systems biology, personalized medicine and molecular epidemiology. Molecular Systems Biology, 2, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Toole, A., Alakkari, A., Keegan, D., Doherty, G., Mulcahy, H., & O’Donoghue, D. (2012). Primary sclerosing cholangitis and disease distribution in inflammatory bowel disease. Clinical Gastroenterology and Hepatology, 10, 439–441.

    Article  PubMed  Google Scholar 

  • Pascher, I., Lundmark, M., Nyholm, P. G., & Sundell, S. (1992). Crystal structures of membrane lipids. Biochimica et Biophysica Acta, 1113, 339–373.

    Article  PubMed  CAS  Google Scholar 

  • Pena, I. A., Marques, L. A., Laranjeira, A. B., Yunes, J. A., Eberlin, M. N., MacKenzie, A., et al. (2017). Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Biochimica et Biophysica Acta, 1863, 121–128.

    Article  PubMed  CAS  Google Scholar 

  • Perez, M. J., & Briz, O. (2009). Bile-acid-induced cell injury and protection. World Journal of Gastroenterology, 15, 1677–1689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plitman, E., de la Fuente-Sandoval, C., Reyes-Madrigal, F., Chavez, S., Gomez-Cruz, G., Leon-Ortiz, P., et al. (2016). Elevated Myo-inositol, choline, and glutamate levels in the associative striatum of antipsychotic-naive patients with first-episode psychosis: A proton magnetic resonance spectroscopy study with implications for glial dysfunction. Schizophrenia Bulletin, 42, 415–424.

    Article  PubMed  Google Scholar 

  • Rajendran, L., & Simons, K. (2005). Lipid rafts and membrane dynamics. Journal of Cell Science, 118, 1099–1102.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E. A. (2003). Neonatal hepatitis syndrome. Seminars in Neonatology, 8, 357–374.

    Article  PubMed  Google Scholar 

  • Rovira, A., Alonso, J., & Cordoba, J. (2008). MR imaging findings in hepatic encephalopathy. American Journal of Neuroradiology, 29, 1612–1621.

    Article  PubMed  CAS  Google Scholar 

  • Russo, P., Magee, J., Anders, R., & Spino, C. (2016). Key histopathologic features of liver biopsies that distinguish biliary atresia from other causes of infantile cholestasis and their correlation with outcome: a multicenter study. American Journal of Surgical Pathology, 40, 1.

    Article  Google Scholar 

  • Sano, H., Nakazawa, T., Ando, T., Hayashi, K., Naitoh, I., Okumura, F., et al. (2011). Clinical characteristics of inflammatory bowel disease associated with primary sclerosing cholangitis. Journal of Hepato-Biliary-Pancreatic Sciences, 18, 154–161.

    Article  PubMed  Google Scholar 

  • Sira, M. M., Taha, M., & Sira, A. M. (2014). Common misdiagnoses of biliary atresia. European Journal of Gastroenterology & Hepatology, 26, 1300–1305.

    Article  Google Scholar 

  • Smid, V., Petr, T., Vanova, K., Jasprova, J., Suk, J., Vitek, L., et al. (2016). Changes in liver ganglioside metabolism in obstructive cholestasis: The role of oxidative stress. Folia Biologica, 62, 148–159.

    PubMed  CAS  Google Scholar 

  • Sokol, R. J., Mack, C., Narkewicz, M. R., & Karrer, F. M. (2003). Pathogenesis and outcome of biliary atresia: Current concepts. Journal of Pediatric Gastroenterology and Nutrition, 37, 4–21.

    Article  PubMed  Google Scholar 

  • Stirpe, F., Ravaioli, M., Battelli, M. G., Musiani, S., & Grazi, G. L. (2002). Xanthine oxidoreductase activity in human liver disease. The American Journal of Gastroenterology, 97, 2079–2085.

    Article  PubMed  CAS  Google Scholar 

  • Struys, E. A., & Jakobs, C. (2010). Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: Evidence for an alternative pathway of pipecolic acid formation. FEBS Letters, 584, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Tam, P. K. H., Chung, P. H. Y., St Peter, S. D., Gayer, C. P., Ford, H. R., Tam, G. C. H., et al. (2017). Advances in paediatric gastroenterology. Lancet, 390, 1072–1082.

    Article  PubMed  Google Scholar 

  • Tietge, U. J., Bahr, M. J., Manns, M. P., & Boker, K. H. (2003). Hepatic amino-acid metabolism in liver cirrhosis and in the long-term course after liver transplantation. Transplant International, 16, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12, 523–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verkade, H. J., Bezerra, J. A., Davenport, M., Schreiber, R. A., Mieli-Vergani, G., Hulscher, J. B., et al. (2016). Biliary atresia and other cholestatic childhood diseases: Advances and future challenges. Journal of Hepatology, 65, 631–642.

    Article  PubMed  Google Scholar 

  • Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. ACS Chemical Biology, 5, 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Lv, H., Zhang, G., Sun, W., Zhou, D., Jiao, G., et al. (2008). Development and validation of a ultra performance LC-ESI/MS method for analysis of metabolic phenotypes of healthy men in day and night urine samples. Journal of Separation Science, 31, 2994–3001.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zhang, A., Han, Y., Wang, P., Sun, H., Song, G., et al. (2012). Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Molecular & Cellular Proteomics, 11, 370–380.

    Article  CAS  Google Scholar 

  • Weber-Mzell, D., Zaupa, P., Petnehazy, T., Kobayashi, H., Schimpl, G., Feierl, G., et al. (2006). The role of nuclear factor-kappa B in bacterial translocation in cholestatic rats. Pediatric Surgery International, 22, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • **a, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9, 280–299.

    Article  PubMed  CAS  Google Scholar 

  • **a, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res, 37, W652-60.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Xu, G., Zheng, Y., Kong, H., Pang, T., Lv, S., et al. (2004). Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 813, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Xu, G., Zheng, Y., Kong, H., Wang, C., Zhao, X., et al. (2005). Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography A, 1084, 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Yao, W., Gu, H., Zhu, J., Barding, G., Cheng, H., Bao, B., et al. (2014). Integrated plasma and urine metabolomics coupled with HPLC/QTOF-MS and chemometric analysis on potential biomarkers in liver injury and hepatoprotective effects of Er-Zhi-Wan. Analytical and Bioanalytical Chemistry, 406, 7367–7378.

    Article  PubMed  CAS  Google Scholar 

  • Ye, Q., Yin, W., Zhang, L., **ao, H., Qi, Y., Liu, S., et al. (2017). The value of grip test, lysophosphatidlycholines, glycerophosphocholine, ornithine, glucuronic acid decrement in assessment of nutritional and metabolic characteristics in hepatitis B cirrhosis. PLoS ONE, 12, e0175165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, J., Marsh, S., Hu, J., Feng, W., & Wu, C. (2016) The pathogenesis of nonalcoholic fatty liver disease: Interplay between diet, gut microbiota, and genetic background. Gastroenterology Research and Practice 2016, 2862173.

    PubMed  PubMed Central  Google Scholar 

  • Zerbini, M. C., Gallucci, S. D., Maezono, R., Ueno, C. M., Porta, G., Maksoud, J. G., et al. (1997). Liver biopsy in neonatal cholestasis: A review on statistical grounds. Modern Pathology, 10, 793–799.

    PubMed  CAS  Google Scholar 

  • Zhao, D., Han, L., He, Z., Zhang, J., & Zhang, Y. (2014). Identification of the plasma metabolomics as early diagnostic markers between biliary atresia and neonatal hepatitis syndrome. PLoS ONE, 9, e85694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, K., Wang, J., **e, G., Zhou, Y., Yan, W., Pan, W., et al. (2015a). Distinct plasma bile acid profiles of biliary atresia and neonatal hepatitis syndrome. Journal of Proteome Research, 14, 4844–4850.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, K., **e, G., Wang, J., Zhao, A., Liu, J., Su, M., et al. (2015b). Metabonomics reveals metabolite changes in biliary atresia infants. Journal of Proteome Research, 14, 2569–2574.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (81473725 and 81373688) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1550). In addition, Wei-Wei Li especially wishes to thank Ji-Xuan He for his support over the past decade.

Author information

Authors and Affiliations

Authors

Contributions

YY, SJJ and WSC designed the experiments. LWW and HLL involved in taking ethical clearance, collecting samples and managing their clinical details. LWW, DQG and TJL supervised GC–MS experiments. LWW, WSC, SJJ, XT and LLL contributed the reagents/materials/analysis tools, analysed the data and prepared the gures. LWW wrote the main manuscript. SJJ and WSC evaluated the manuscript critically and all the authors reviewed the manuscript.

Corresponding authors

Correspondence to **-Jun Shan or Shou-Chuan Wang.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

The study was approved by the ethics committee of Bei**g Children’s Hospital, Bei**g, China. All protocols and procedures were adhered to institutional ethical standards and/or research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Prior informed consent was obtained from all the participants in the study with institutional review approval.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17582 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WW., Yang, Y., Dai, QG. et al. Non-invasive urinary metabolomic profiles discriminate biliary atresia from infantile hepatitis syndrome. Metabolomics 14, 90 (2018). https://doi.org/10.1007/s11306-018-1387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1387-z

Keywords

Navigation