Log in

Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hallmark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM (the calcein acetoxymethyl-ester) is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phosphate pathway was significantly altered. To elucidate whether these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Calcein AM:

Calcein acetoxymethyl-ester

CDK:

Cyclin-dependent kinase

DMEM:

Dulbecco’s modified eagle medium

FCS:

Fetal calf serum

Ct MEF:

Mouse embryonic fibroblast

PBS:

Phosphate buffer saline

PPP:

Pentose phosphate pathway

pRb:

Retinoblastoma protein

TKO MEF:

Mouse embryonic fibroblast knockout for CDK4, CDK6 and CDK2

References

  • Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., et al. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Research, 57, 4242–4248.

    PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Comin-Anduix, B., Boros, L. G., Marin, S., Boren, J., Callol-Massot, C., Centelles, J. J., et al. (2002). Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells. Journal of Biological Chemistry, 277, 46408–46414.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J. S., Ramakrishna, R., & Palsson, B. O. (2002). Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnology and Bioengineering, 77, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Frangioni, J. V., & Neel, B. G. (1993). Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Analytical Biochemistry, 210, 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Fry, D. W., Harvey, P. J., Keller, P. R., Elliott, W. L., Meade, M., Trachet, E., et al. (2004). Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Molecular Cancer Therapeutics, 3, 1427–1438.

    PubMed  CAS  Google Scholar 

  • Graf, F., Koehler, L., Kniess, T., Wuest, F., Mosch, B., & Pietzsch, J. (2009). Cell cycle regulating kinase Cdk4 as a potential target for tumor cell treatment and tumor imaging. Journal of Oncology, 2009, 106378.

    Article  PubMed  Google Scholar 

  • Hall, M., & Peters, G. (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Advances in Cancer Research, 68, 67–108.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E. & Lane, D. (Eds.). (1988). Antibodies: a laboratory manual (p. 469). New York: Cold Spring Harbor Laboratory Press.

  • Jonsson, B., Liminga, G., Csoka, K., Fridborg, H., Dhar, S., Nygren, P., et al. (1996). Cytotoxic activity of calcein acetoxymethyl ester (calcein/AM) on primary cultures of human haematological and solid tumours. European Journal of Cancer, 32A, 883–887.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, W., Lin, J., & Tang, T. K. (2000). Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. International Journal of Cancer, 85, 857–864.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P., & Hinds, P. W. (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell, 9, 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W. N. P. (2006). Characterizing phenotype with tracer based metabolomics. Metabolomics, 2, 31–39.

    Article  Google Scholar 

  • Lee, W. N., Boros, L. G., Puigjaner, J., Bassilian, S., Lim, S., & Cascante, M. (1998). Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2–13C2]glucose. American Journal of Physiology, 274, E843–E851.

    PubMed  CAS  Google Scholar 

  • Lee, W. N., Byerley, L. O., Bergner, E. A., & Edmond, J. (1991). Mass isotopomer analysis: theoretical and practical considerations. Biological Mass Spectrometry, 20, 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Liminga, G., Jonsson, B., Nygren, P., & Larsson, R. (1999). On the mechanism underlying calcein-induced cytotoxicity. European Journal of Pharmacology, 383, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Liminga, G., Martinsson, P., Jonsson, B., Nygren, P., & Larsson, R. (2000). Apoptosis induced by calcein acetoxymethyl ester in the human histiocytic lymphoma cell line U-937 GTB. Biochemical Pharmacology, 60, 1751–1759.

    Article  PubMed  CAS  Google Scholar 

  • Liminga, G., Nygren, P., Dhar, S., Nilsson, K., & Larsson, R. (1995). Cytotoxic effect of calcein acetoxymethyl ester on human tumor cell lines: drug delivery by intracellular trap**. Anticancer Drugs, 6, 578–585.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, A. S., & Weinberg, R. A. (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Molecular and Cellular Biology, 18, 753–761.

    PubMed  CAS  Google Scholar 

  • Mahale, S., Aubry, C., Jenkins, P. R., Marechal, J. D., Sutcliffe, M. J., & Chaudhuri, B. (2006). Inhibition of cancer cell growth by cyclin dependent kinase 4 inhibitors synthesized based on the structure of fascaplysin. Bioorganic Chemistry, 34(5), 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres, M., & Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nature Reviews Cancer, 1, 222–231.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres, M., & Barbacid, M. (2006). Is cyclin D1-CDK4 kinase a bona fide cancer target? Cancer Cell, 9, 2–4.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres, M., Sotillo, R., Santamaria, D., Galan, J., Cerezo, A., Ortega, S., et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell, 118, 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Marzec, M., Kasprzycka, M., Lai, R., Gladden, A. B., Wlodarski, P., Tomczak, E., et al. (2006). Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood, 108, 1744–1750.

    Article  PubMed  CAS  Google Scholar 

  • Matito, C., Mastorakou, F., Centelles, J. J., Torres, J. L., & Cascante, M. (2003). Antiproliferative effect of antioxidant polyphenols from grape in murine Hepa-1c1c7. European Journal of Nutrition, 42, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • McInnes, C. (2008). Progress in the evaluation of CDK inhibitors as anti-tumor agents. Drug Discovery Today, 13, 875–881.

    Article  PubMed  CAS  Google Scholar 

  • Menu, E., Garcia, J., Huang, X., Di Liberto, M., Toogood, P. L., Chen, I., et al. (2008). A novel therapeutic combination using PD 0332991 and bortezomib: study in the 5T33MM myeloma model. Cancer Research, 68, 5519–5523.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Myohanen, S. K., Baylin, S. B., & Herman, J. G. (1998). Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Research, 58, 591–593.

    PubMed  CAS  Google Scholar 

  • Poulsen, H. S., & Frederiksen, P. (1981). Glucose-6-phosphate dehydrogenase activity in human breast cancer. Lack of association with oestrogen receptor content. Acta Pathol Microbiol Scand [A], 89, 263–270.

    CAS  Google Scholar 

  • Ramos-Montoya, A., Lee, W.-N. P., Bassilian, S., Lim, S., Trebukhina, R. V., Kazhyna, M. V., et al. (2006). Pentose phosphate cycle oxidative and non-oxidative balance: a new vulnerable target for overcoming drug resistance in cancer. International Journal of Cancer, 119, 2733–2741.

    Article  CAS  Google Scholar 

  • Rubio-Martinez, J., Pinto, M., Tomas M.S., Perez, J. J. (2005). Dock_Dyn: a program for fast molecular docking using molecular dynamics information. University of Barcelona and Technical University of Catalonia.

  • Santamaria, D., & Ortega, S. (2006). Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Frontiers in Bioscience, 11, 1164–1188.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. Journal of Clinical Oncology, 24, 1770–1783.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J. (1996). Cancer cell cycles. Science, 274, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J., & Roberts, J. M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes and Development, 18, 2699–2711.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. B., & Johnson, K. S. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Villacanas, O., Perez, J. J., & Rubio-Martinez, J. (2002). Structural analysis of the inhibition of Cdk4 and Cdk6 by p16(INK4a) through molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 20, 347–358.

    PubMed  CAS  Google Scholar 

  • Villacanas, O., & Rubio-Martinez, J. (2006). Reducing CDK4/6–p16(INK4a) interface. Computational alanine scanning of a peptide bound to CDK6 protein. Proteins, 63, 797–810.

    Article  PubMed  CAS  Google Scholar 

  • Vizan, P., Alcarraz-Vizán, G., Diaz-Moralli, S., Rodriguez-Prados, J. C., Zanuy, M., Centelles, J. J., et al. (2007). Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry. Analytical Chemistry, 79(13), 5000–5005.

    Article  PubMed  CAS  Google Scholar 

  • Vizan, P., Alcarraz-Vizan, G., Diaz-Moralli, S., Solovjeva, O. N., Frederiks, W. M., & Cascante, M. (2009). Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. International Journal of Cancer, 124, 2789–2796.

    Article  CAS  Google Scholar 

  • Vizán, P., Mazurek, S., & Cascante, M. (2008). Robust metabolic adaptation underlying tumor progression. Metabolomics, 4, 1–12.

    Article  Google Scholar 

  • Warburg, O. (1956). Origin of cancer cells. Oncologia, 9, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Q., Sicinska, E., Geng, Y., Ahnstrom, M., Zagozdzon, A., Kong, Y., et al. (2006). Requirement for CDK4 kinase function in breast cancer. Cancer Cell, 9, 23–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs Ursula Valls for her technical support in the experiments and Dr David Santamaria for his help in MEF procedures. MEF cells were a generous gift from Dr Mariano Barbacid, CNIO-Madrid (Spain). This study was supported by the projects SAF2008-00164 (to MC) and SAF2007-60491 (to NA) and by RD06/0020/0046 (to MC), RD06/0020/0010 (to OB) from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III, all of them funded by the Ministerio de Ciencia e Innovación-Spanish government and European Regional Development Funds (ERDF) “Una manera de hacer Europa”. It has also received financial support from the European Union-funded project ETHERPATHS (FP7-KBBE-222639) (http://www.etherpaths.org/) and from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)-Generalitat de Catalunya (2009SGR01308 and predoctoral fellowship of M.Z.). Mass spectrometry facility was supported by NIH grants to WNP Lee from UCLA Center of Excellence (PO1 AT003960-01) and from Harbor-UCLA GCRC (MO1 RR00425-33). MC acknowledges the support received through the prize “ICREA Academia” for excellence in research, funded by ICREA foundation-Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cascante.

Additional information

Miriam Zanuy and Antonio Ramos-Montoya contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanuy, M., Ramos-Montoya, A., Villacañas, O. et al. Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle. Metabolomics 8, 454–464 (2012). https://doi.org/10.1007/s11306-011-0328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0328-x

Keywords

Navigation