Log in

Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Tea (Camellia sinensis (L.) O. Kuntze) is one of the most beneficial beverages due to its health attributes. Whole leaf transcriptome analysis of three leaf stages of C. sinensis has the potential to reveal candidate genes associated with these major beneficial compounds. Epigallocatechin-3-gallate (EGCG) is one of the most important bioactive catechin (antioxidant) in tea drink derived. EGCG has many important physiological functions and positive effects on human health, such as anticancer, antioxidation, controlling blood pressure, and blood sugar content. Although the major metabolic pathways of tea-specific compounds have been established, knowledge of the genes involved in the regulation and synthesis of EGCG in C. sinensis is limited. To gain insight into the molecular mechanisms that regulate EGCG levels, leaf transcriptomes were sequenced at three developmental stages (bud, second leaf, and fourth leaf) of two C. sinensis cultivars and one F1 hybrid line #1005 that possess varying EGCG levels. Approximately 470.9 M of quality controlled-filtered sequencing paired-end reads corresponding to 47.09 G nucleotides were obtained from which 130,762 unique sequences were identified. Genes whose expression correlated with changes in EGCG levels were identified, which may be associated with EGCG content. Prediction of the potential targets of microRNAs (miRNAs), the specific subset of long noncoding RNAs (LncRNAs), and mRNA-like noncoding RNAs (mlncRNAs) indicated that miRNAs may play a role in the expression regulation of the genes involved in EGCG levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arti R, Singh K, Ahuja PS, Kumar S (2012) Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205–210

    Article  Google Scholar 

  • Asosii P, Richard CM, Kashmir S, Sanjay K (2012) CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea [Camellia sinensis (L.) O. Kuntze]. Gene 502:69–74

    Article  Google Scholar 

  • Cao SX, Cheng X, Jiang ZZ et al (2013) Differential genes expression in tea plant (Cameilla sinensis L.) induced by Ectropis oblique feeding based on cDNA-AFLP. J Integr Agric 46:4119–4130

    CAS  Google Scholar 

  • Dewick PM, Haslam E (1969) Phenol biosynthesis in higher plants. Gallic acid. Biochem J 113:537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillespie K, Kodani I, Dickinson DP et al (2008) Effects of oral consumption of the green tea polyphenol EGCG in a murine model for human Sjogren’s syndrome, an autoimmune disease. Life Sci 83:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ et al (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang XL, Liu YJ, Li WW et al (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8:e62315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YL, Hong CY, Kok SH et al (2009) An extract of green tea, epigallocatechin-3-gallate, reduces periapical lesions by inhibiting cysteine-rich 61 expression in osteoblasts. J Endod 35:206–211

    Article  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YL, Juan IM, Chen YL et al (1996) Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J Agric Food Chem 44:1387–1394

    Article  CAS  Google Scholar 

  • Liu Y, Gao L, Liu L et al (2012) Purification and characterization of a novel galloyltransferase involved in catechingalloylation in the tea plant (Camellia sinensis). J BiolChem 287(53):44406–44417

    CAS  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG et al (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Wakamatsu N, Jouyu H et al (2011) An extensive analysis of R2R3-MYB regulatory genes from Fagus Crenata. Tree Genet Genomes 7(2):307–321

    Article  Google Scholar 

  • Muir RM, Ibáñez AM, Uratsu SL et al (2011) Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglansregia). Plant MolBiol 75:555–565

    CAS  Google Scholar 

  • Palle SR, Seeve CM, Eckert A et al (2011) Natural variation in expression of genes involved in xylem development in loblolly pine (Pinus taeda L.). Tree Genet Genomes 7(1):193–206

    Article  Google Scholar 

  • Punyasiri PAN, Abeysinghe ISB, Kumar V et al (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22–30

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdeva AK, Kuhad A, Tiwari V et al (2009) Epigallocatechingallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence. Behav Brain Res 205:414–420

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi CY, Yang H, Wei CL et al (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome wide studies. ProcNatlAcadSci U S A 100:9440–9445

    Article  CAS  Google Scholar 

  • Wan XC (2011) Tea biochemistry. P: 108

  • Wang XC, Zhao QY, Ma CL et al (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XC, Hao XY, Ma CL et al (2014) Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization. Tree Genet Genomes 10(5):1149–1159

    Article  Google Scholar 

  • Wei K, Wang LY, Cheng H et al (2013) Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene 514:91–98

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicki AT (2012) The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Li Y, Yan H et al (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics 13:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **e F, Zhang B (2010) Target-align: a tool for plant microRNA target identification. Bioinformatics 26:3002–3003

    Article  CAS  PubMed  Google Scholar 

  • **e F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicumvirgatum). Planta 232:417–434

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Becker CM, Lui WT et al (2011) Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril 96:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Honda M, Ikigai H et al (2002) Inhibitory effects of (−)-epigallocatechingallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antivir Res 53:19–34

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Shin DH, Cho MH et al (2011) An ankyrin repeat protein is involved in anthocyanin biosynthesis in Arabidopsis. Physiol Plant 142:314–325

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK et al (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan L, **ong L, Deng TT et al (2015) Comparative profiling of gene expression in Camellia sinensis L. cultivar AnJiBaiCha leaves during periodic albinism. Gene 561:23–29

    Article  CAS  PubMed  Google Scholar 

  • Yun B, Wang YY, Li MQ et al (2012) Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol Nutr Food Res 56:1292–1303

    Article  Google Scholar 

  • Zhang Y, Yang ND, Zhou F et al (2012) Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 10 e46749

  • Zhao L, Gao L, Wang H et al (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. FunctIntegr Genomics 13:75–98

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the grants from the National Natural Science Foundation of China (grant no. 31170651). We thank Dr. Liangsheng Zhang for technical assistance and Li Zhang for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyou Qiu.

Additional information

Communicated by J. L. Wegrzyn

**ke Lin, Iain W. Wilson, and Guo** Ge contributed equally to this work.

Electronic supplementary material

Figure S1

(GIF 126 kb)

High Resolution Image

(TIFF 2702 kb)

Figure S2

(GIF 77 kb)

High Resolution Image

(TIFF 6354 kb)

Figure S3

(GIF 19 kb)

High Resolution Image

(TIFF 155 kb)

Figure S4

(GIF 20 kb)

High Resolution Image

(TIFF 152 kb)

Figure S5

(GIF 14 kb)

High Resolution Image

(TIFF 126 kb)

Figure S6

(GIF 20 kb)

High Resolution Image

(TIFF 175 kb)

Figure S7

(GIF 25 kb)

High Resolution Image

(TIFF 192 kb)

Figure S8

(GIF 19 kb)

High Resolution Image

(TIFF 166 kb)

Figure S9

(GIF 18 kb)

High Resolution Image

(TIFF 150 kb)

Figure S10

(GIF 23 kb)

High Resolution Image

(TIFF 178 kb)

Figure S11

(GIF 18 kb)

High Resolution Image

(TIFF 156 kb)

Figure S12

(GIF 16 kb)

High Resolution Image

(TIFF 151 kb)

Figure S13

(GIF 24 kb)

High Resolution Image

(TIFF 189 kb)

Table S1

(DOC 52 kb)

Table S2

(DOC 34 kb)

Table S3

(DOC 32 kb)

Table S4

(DOC 32 kb)

Table S5

(DOC 35 kb)

Table S6

(DOC 37 kb)

Table S7

(DOC 48 kb)

Table S8

(XLS 190 kb)

Table S9

(XLSX 6041 kb)

Table S10

(XLSX 3253 kb)

Table S11

(XLSX 67 kb)

Table S12

(XLSX 4753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wilson, I.W., Ge, G. et al. Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content. Tree Genetics & Genomes 13, 13 (2017). https://doi.org/10.1007/s11295-016-1089-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1089-5

Keywords

Navigation