Log in

Inheritance of reproductive phenology traits and related QTL identification in apricot

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Reproductive phenological traits of great agronomical interest in apricot species, including flowering date, ripening date and fruit development period, were studied during 3 years in two F1 progenies derived from the crosses ‘Bergeron’ × ‘Currot’ (B × C) and ‘Goldrich’ × ‘Currot’ (G × C). Results showed great variability and segregation in each population, confirming the polygenic nature and quantitative inheritance of all the studied traits. Genetic linkage maps were constructed combining SSR and SNP markers, using 87 markers in the ‘B × C’ population and 89 markers in ‘G × C’. The genetic linkage maps in both progenies show the eight linkage groups (LGs) of apricot, covering a distance of 394.9 cM in ‘Bergeron’ and of 414.3 cM in ‘Currot’. The ‘Goldrich’ and ‘Currot’ maps were of 353.5 and 422.3 cM, respectively. The average distance obtained between markers was thus 7.59 cM in ‘Bergeron’ and 7.53 cM in ‘Currot’, whereas the ‘Goldrich’ and ‘Currot’ averages were 5.6 and 7.5 cM, respectively. According to the polygenic nature of the studied phenology traits, QTLs linked to flowering date, ripening date and the fruit development period were identified during the 3 years of the study in all LGs except for LG 8. Among the QTLs identified, major QTLs for flowering and ripening date and the fruit development period were identified in LG 4, especially important in the ‘G × C’ population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170

    Article  Google Scholar 

  • Anderson JL, Seeley SD (1993) Bloom delay in deciduous fruits. Hortic Rev 15:97–144

    Google Scholar 

  • Andrés MV, Durán JM (1999) Cold and heat requirements of the apricot (Prunus armeniaca L.) tree. J Hortic Sci Biotechnol 74:757–761

    Article  Google Scholar 

  • Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, Viola R, Velasco R, Dunwell JM, Troggio M, Sargent DJ (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genoty** array. BMC Genet 13:203

    Article  CAS  Google Scholar 

  • Badenes ML, Martínez-Calvo J, Llácer G (1998) Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102:93–99

    Article  Google Scholar 

  • Baldocchi D, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Chang 87:S153–S166

    Article  Google Scholar 

  • Ball A, Stapley J, Dawson D, Birkhead T, Burke T, Slate J (2010) A comparison of SNPs and microsatellites as linkage map** markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genet 11:218

    Article  Google Scholar 

  • Campoy JA, Martínez-Gómez P, Ruiz D, Rees J, Celton JM (2010) Develo** microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Mol Biol Report 28:560–568

    Article  CAS  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011a) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hortic 130:357–372

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011b) Inheritance of flowering date in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 29:404–410

    Article  CAS  Google Scholar 

  • Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfillment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: an approach in Murcia (Spain) and the western cape (South Africa). Eur J Agron 37:43–55

    Article  Google Scholar 

  • Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J (2015) New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report 33:783–796

    Article  CAS  Google Scholar 

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87

    Article  Google Scholar 

  • Castède S, Campoy JA, Quero García J, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715

    Article  PubMed  Google Scholar 

  • Castède S, Campoy JA, Le Dantec L, Quero García J, Barreneche T, Wenden B, Dirlewanger E (2015) Map** of candidate genes involved in bud dormancy and flowering date in sweet cherry (Prunus avium). PLoS One 10:e0143250

    Article  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van De Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7:e31745

    Article  PubMed  PubMed Central  Google Scholar 

  • Cipriani G, Lot G, Huang HG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Basch): isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Couranjou J (1995) Genetic studies of 11 quantitative characters in apricot. Sci Hortic 61:61–75

    Article  Google Scholar 

  • Dhanapal AP, Martínez-García PJ, Gradziel TM, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. J Plant Sci Mol Breed, ISSN 2050–2389

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Map** QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret L (2002) Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arùs P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109(5):280–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204

    Article  Google Scholar 

  • Erez A (2000) Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In: Erez A (ed) Temperate fruit crops in warm climates. Kluwer Academic Publishers, Dordrecht, pp 17–48

  • Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Map** quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Hagen LS, Chaib J, Fad B, Decroocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellite from apricot (Prunus armeniaca L). Mol Ecol Notes 4:432–434

    Article  Google Scholar 

  • Hanninen H, Tanio K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16:412–416

    Article  PubMed  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genoty** in barley and wheat. Mol Breed 21:271–281

    Article  CAS  Google Scholar 

  • Klagges C, Campoy JA, Quero-García J, Guzmán A, Mansur L, Gratacós E, Silva H, Rosyara UR, Iezzoni A, Meisel LA, Dirlewanger E (2013) Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS One 7:e54743

    Article  Google Scholar 

  • Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL map** survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). J Exp Bot 63:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Luedeling E, Zhang M, Girvetz EH (2009a) Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS One 4:e616

    Article  Google Scholar 

  • Luedeling E, Zhang MH, McGranahan G, Leslie C (2009b) Validation of winter chill models using historic records of walnut phenology. Agric For Meteorol 149:1854–1864

    Article  Google Scholar 

  • Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:e20155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013) High density SNP map** and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36

    Article  Google Scholar 

  • Messina R, Lain O, Marrazo T, Cipriano G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434

    Article  CAS  Google Scholar 

  • Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic map** in European pear and interspecific Pyrus hybrids. PLoS One 8:e77022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuñez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Menesses C (2015) Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes 11:86

    Article  Google Scholar 

  • Okie WR, Blackburn (2008) Interaction of chill and heat in peach flower bud dormancy. Hortic Sci 43:1161–1161

    Google Scholar 

  • Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage map** for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    Article  CAS  PubMed  Google Scholar 

  • Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, Stegmeir T, Sebolt A, Gilmore B, Lawley C, Mockler TC, Bryant DW, Wilhelm L, Iezzoni A (2012) Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One 7:e48305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirona R, Eduardo I, Pacheco I, Linge CD, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine map** and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233–241

    Article  CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143–158

    Article  CAS  Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263

    Article  Google Scholar 

  • Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, Adami M, Gennari F, Cervellati C, De Franceschi P, Sansavini S, Bureau S, Gouble B, Reich M, Renard CMGC, Bassi D, Testolin R (2010) Identification of QTLs for fruit quality traits in apricot. Acta Hortic 862:587–592

    Article  CAS  Google Scholar 

  • Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 31:1506–1517

    Article  CAS  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, et al. (2014) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Report 32:1–18

    Article  Google Scholar 

  • Salazar JA, Rubio M, Ruiz D, Tartarini S, Martínez-Gómez P, Dondini L (2015) SNP development for genetic diversity analysis in apricot. Tree Genet Genome 11:15

    Article  Google Scholar 

  • Sánchez-Pérez R, Howad D, Dicenta F, Arús P, Martínez-Gómez P (2007a) Map** major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Article  Google Scholar 

  • Sánchez-Pérez R, Ortega E, Duval H, Martínez-Gómez P, Dicenta F (2007b) Inheritance and relationships of important agronomic traits in almond. Euphytica 155:381–391

    Article  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Article  Google Scholar 

  • Seymour B, Taylor JE, Tucker GA (1993) Biochemistry of fruits ripening. Chapman and Hall, London

    Book  Google Scholar 

  • Socquet-Juglard D, Christen D, Devenes G, Gessler C, Duffy B, Patocchi A (2013) Map** architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report 31:387–397

    Article  CAS  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LE, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L) Basch). Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Testolin R, Messina R, Lain O, Marrazzo MT, Huang WG, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461

    Article  CAS  Google Scholar 

  • Trainin T, Bar-Ya’akov I, Holland D (2013) ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet Genomes 9:753–766

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma, B.V., Wageningen

    Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    Article  CAS  Google Scholar 

  • Wills RBH (1998) Enhancement of senescence in nonclimacteric fruit and vegetables by low ethylene levels. Acta Hortic 464:159–162

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by project “apricot breeding” (AGL2013-41,452-R) of the Spanish Ministry of Science and “breeding stone fruit species assisted by molecular tools” of the Seneca Foundation of the region of Murcia (19879/GERM/15). The authors thank the Fondazione Cassa Di Risparmio in Bologna (Italy) for supporting the Sequenom analysis in the Centre for Applied Biomedical Research (CRBA) of Bologna.

Data archiving statement

The progenitors used in the generation of progenies are registered in the Plant Variety Database (PLUTO; http://www.upov.int/pluto/en) belonging to the International Union for the Protection of New Varieties of Plants (UPOV) http://www.upov.int. The apricot cultivars and progenies in the study belong to the germplasm collection and breeding programmes of CEBAS-CSIC, which includes some breeding research material whose QTL data is available in the Genome Database for Rosaceae (GDR, http://www.rosaceae.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Dondini or Pedro Martínez-Gómez.

Additional information

Communicated by A. G. Abbott

Electronic supplementary material

Table S1

(DOCX 19 kb)

Table S2

(DOCX 21 kb)

Table S3

(DOCX 20 kb)

Table S4

(DOCX 20 kb)

Table S5

(DOCX 23 kb)

Table S6

(DOCX 20 kb)

Table S7

(DOCX 19 kb)

Table S8

(DOCX 20 kb)

Table S9

(DOCX 21 kb)

Table S10

(DOCX 20 kb)

Table S11

(DOCX 20 kb)

Table S12

(DOCX 25 kb)

Table S13

(DOCX 20 kb)

Table S14

(DOCX 21 kb)

Table S15

(DOCX 21 kb)

Table S16

(DOCX 19 kb)

Table S17

(DOCX 19 kb)

Table S18

(DOCX 20 kb)

Table S19

(DOCX 20 kb)

Table S20

(DOCX 20 kb)

Table S21

(DOCX 20 kb)

Table S22

(DOCX 19 kb)

Table S23

(DOCX 19 kb)

Table S24

(DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, J.A., Ruiz, D., Campoy, J.A. et al. Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genetics & Genomes 12, 71 (2016). https://doi.org/10.1007/s11295-016-1027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1027-6

Keywords

Navigation