Log in

Genetic and physical map** of the SH3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Resistance to coffee leaf rust is conferred by SH3, a major dominant gene that has been introgressed from a wild coffee species Coffea liberica (genome L) into the allotetraploid cultivated species, Coffea arabica (genome CaEa). As the first step toward the map-based cloning of the SH3 gene, using a bacterial artificial chromosome (BAC) library, we describe the construction of a physical map in C. arabica spanning the resistance locus. This physical map consists in two homeologous BAC-contigs of 1,170 and 1,208 kb corresponding to the subgenomes Ca and Ea, respectively. Genetic analysis was performed using a single nucleotide polymorphism detection assay based on Sanger sequencing of amplicons. The C. liberica-derived chromosome segment that carries the SH3 resistance gene appeared to be introgressed on the sub-genome Ca. The position of the SH3 locus was delimited within an interval of 550 kb on the physical map. In addition, our results indicated a sixfold reduction in recombination frequency in the introgressed SH3 region compared to the orthologous region in Coffea canephora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical map** of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377

    Article  CAS  PubMed  Google Scholar 

  • Diniz LEC, Sakiyama NS, Lashermes P, Caixeta ET, Oliviera ACB, Zambolin EM, Loureiro ME, Pereira AA, Zambolin L (2005) Analysis of AFLP markers associated to the Mex-1 locus in Icatu progenies. Crop Breed App Biotech 5:387–393

    CAS  Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Bérard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mézard C (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16:106–114

    Article  CAS  PubMed  Google Scholar 

  • Eskes AB (1989) Resistance. In: Kushalappa AC, Eskes AB (eds) Coffee rust: epidemiology, resistance, and management. CRC Press, Florida, pp 171–291

    Google Scholar 

  • Etienne H, Lashermes P, Menéndez-Yuffá A, De Guglielmo-Cróquer Z, Alpizar E, Sreenath HL (2008) Coffee. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants, volume 8, plantation crops, ornamentals and turf grasses. Blackwell Publishing, Oxford, UK, pp 57–84

    Google Scholar 

  • Ganal MW, Tanksley SD (1996) Recombination around the Tm2a and Mi resistance genes in different crosses of Lycopersicon peruvianum. Theor Appl Genet 92:101–108

    Article  CAS  Google Scholar 

  • Herrera JC, D’Hont A, Lashermes P (2007) Use of fluorescent in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (Coffea arabica L.). Genome 50:619–626

    Article  PubMed  Google Scholar 

  • Hert DG, Fredlake CP, Barron AE (2008) Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29:4618–4626

    Article  CAS  PubMed  Google Scholar 

  • Kushalappa AC, Eskes AB (1989) Advances in coffee rust research. Annu Rev Phytopathol 27:503–531

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Bralow A, Daly MJ, Loincoln SE, Newburg L (1987) MAP MAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meiosis. Genome 44:589–596

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Ansaldi C, Gichuru E, Noir S (2010) Analysis of alien introgression in coffee tree (Coffea arabica L.). Mol Breed. doi:10.1007/s11032-010-9424-2, in press

    Google Scholar 

  • Mahé L, Combes MC, Lashermes P (2007) Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Plant Mol Biol 64:699–711

    Article  PubMed  CAS  Google Scholar 

  • Mahé L, Combes MC, Varzea VMP, Guilhaumon C, Lashermes P (2008) Development of sequence characterized DNA markers linked to leaf rust (Hemileia vastatrix) resistance in coffee (Coffea arabica L.). Mol Breed 21:105–113

    Article  CAS  Google Scholar 

  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier L, McPherson J, Waterston R (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084

    CAS  PubMed  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • Nachman MW (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663

    Article  CAS  PubMed  Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic map** of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Patheyron S, Combes MC, Lashermes P, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109:225–230

    Article  CAS  PubMed  Google Scholar 

  • Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8(10):484–491

    Article  CAS  PubMed  Google Scholar 

  • Prakash NS, Combes MC, Naveen KS, Lashermes P (2002) AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica 124:265–271

    Article  Google Scholar 

  • Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, Lashermes P (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into Coffea arabica L. Theor Appl Genet 109:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Prakash NS, Ganesh D, Bhat SS (2005) Population dynamics of coffee leaf rust (Hemileia vastatrix) and recent advances in India. In: Zambolim L, Zambolim E, Várzea VMP (eds) Durable resistance to coffee leaf rust. Universidade Federal de Viçosa, Brasil, pp 411–442

    Google Scholar 

  • Rafalski JA (2002) Novel genetic map** tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333

    Article  CAS  Google Scholar 

  • Ramachandran M, Srinivasan CS (1979) Four generations of selection for resistance to race I of leaf rust in arabica cv. S.288 × ‘Kents’. Indian Coffee 43(6):159–161

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan KH, Narasimhaswamy RL (1975) A review of coffee breeding work done at the Government coffee experiment station, Balehonnur. Indian coffee 34:311–321

    Google Scholar 

  • Staden R, Judge DP, Bonfield JK (2000) The Staden package, 1998. Meth Mol Biol 132:115–130

    CAS  Google Scholar 

  • Stirling B, Newcombe G, Vrebalov J, Bosdet I, Bradshaw HD (2001) Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet 103:1129–1137

    Article  CAS  Google Scholar 

  • Van der Vossen HAM (2001) Coffee breeding practices. In: Clarke RJ, Vitzthum OG (eds) Coffee. Recent developments – agronomy, vol 1. Blackwell Science Ltd, London, pp 184–201

    Google Scholar 

  • Várzea VMP, Marques DV (2005) Population variability of Hemileia vastatrix vs coffee durable resistance. In: Zambolim L, Zambolim E, Várzea VMP (eds) Durable resistance to coffee leaf rust. Universidade Federal de Viçosa, Brasil, pp 53–74

    Google Scholar 

  • Wei F, Gobel-Werner K, Morroll SM, Kurth J, Mao L, Wing RA, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lashermes.

Additional information

Communicated by: A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashermes, P., Combes, MC., Ribas, A. et al. Genetic and physical map** of the SH3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genetics & Genomes 6, 973–980 (2010). https://doi.org/10.1007/s11295-010-0306-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0306-x

Keywords

Navigation