Log in

Determinants of tree survival at local scale in a sub-tropical forest

  • Original Article
  • Published:
Ecological Research

Abstract

Tree survival is a critical driver of stand dynamics, influencing forest structure and composition. Many local-scale drivers (tree size, abiotic and biotic factors) have been proposed as being important in explaining patterns of tree survival, but their contributions are still unknown. We examined the relative importance of these local drivers on tree survival using generalized linear mixed models in an old-growth sub-tropical forest in south China at three levels (community, guild, and species). Among the variables tested, tree size was typically the most important driver of tree survival, followed by abiotic and then biotic variables. Tree size has a strongly positive effect on tree survival for small trees (10–30 cm dbh) and shade-tolerant tree species. Of the abiotic factors tested, elevation tended to be more important in affecting tree survival than other topographic variables. Abiotic factors generally influenced survival of species with relatively high abundances, for individuals in smaller size classes and for mid-tolerant species. Among biotic factors, we found that the mortality of tree species was not driven by density- and frequency-dependent effects in this sub-tropical forest, as indicated by the results of both total basal area of neighbors and the proportion of conspecific neighbors in our study. We conclude that the relative importance of variables driving patterns of tree survival varied greatly among tree size classes, species guilds, shade tolerance, density, and abundance classes in this sub-tropical forest. These results also provide critical information for future studies of forest dynamics and offer insight into forest management in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bai XJ, Queenborough SA, Wang XG, Zhang J, Li BH, Yuan ZQ, **ng DL, Lin F, Ye J, Hao ZQ (2012) Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia 170(3):755–765. doi:10.1007/s00442-012-2348-2

    Article  PubMed  Google Scholar 

  • Berglund H, Jonsson MT, Penttila R, Vanha-Majamaa I (2011) The effects of burning and dead-wood creation on the diversity of pioneer wood-inhabiting fungi in managed boreal spruce forests. For Ecol Manag 261(7):1293–1305. doi:10.1016/j.foreco.2011.01.008

    Article  Google Scholar 

  • Blundell AG, Peart DR (2001) Growth strategies of a shade-tolerant tropical tree: the interactive effects of canopy gaps and simulated herbivory. J Ecol 89(4):608–615

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789

    Article  Google Scholar 

  • Clark DA, Clark DB (1992) Life-history diversity of canopy and emergent trees in a Neotropical rain-forest. Ecol Monogr 62(3):315–344

    Article  Google Scholar 

  • Clark DB, Clark DA (1996) Abundance, growth and mortality of very large trees in Neotropical lowland rain forest. For Ecol Manag 80(1–3):235–244. doi:10.1016/0378-1127(95)03607-5

    Article  Google Scholar 

  • Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90(10):2755–2765

    Article  PubMed  Google Scholar 

  • Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology 90(2):328–334. doi:10.1890/08-0451.1

    Article  PubMed  Google Scholar 

  • Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat associations of tropical trees. J Ecol 95(3):482–492. doi:10.1111/j.1365-2745.2007.01229.x

    Article  Google Scholar 

  • Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK (2009) Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. J Ecol 97(6):1346–1359. doi:10.1111/j.1365-2745.2009.01551.x

    Article  Google Scholar 

  • Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329(5989):330–332. doi:10.1126/science.1190772

    Article  CAS  PubMed  Google Scholar 

  • Condit R (1998) Tropical forest census plots. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Coomes DA (2006) Challenges to the generality of WBE theory. Trends Ecol Evol 21(11):593–596. doi:10.1016/j.tree.2006.09.002

    Article  PubMed  Google Scholar 

  • Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95(1):27–40. doi:10.1111/j.1365-2745.2006.01179.x

    Article  Google Scholar 

  • Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2793

    Article  PubMed  Google Scholar 

  • Das A, Battles J, van Mantgem PJ, Stephenson NL (2008) Spatial elements of mortality risk in old-growth forests. Ecology 89(6):1744–1756. doi:10.1890/07-0524.1

    Article  PubMed  Google Scholar 

  • Davies SJ (2001) Tree mortality and growth in 11 sympatric Macaranga species in Borneo. Ecology 82(4):920–932. doi:10.1890/0012-9658(2001)082[0920:Tmagis]2.0.Co;2

    Google Scholar 

  • Douglas B, Martin M (2009) lme4: Linear mixed-effects models using S4 classes. http://CRAN.R-project.org/package=lme4/

  • Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V (2010) Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98(1):106–116. doi:10.1111/j.1365-2745.2009.01604.x

    Article  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Google Scholar 

  • Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404(6777):493–495

    Article  CAS  PubMed  Google Scholar 

  • He FL, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. J Ecol 88(4):676–688

    Article  Google Scholar 

  • HilleRisLambers J, Clark JS, Beckage B (2002) Density-dependent mortality and the latitudinal gradient in species diversity. Nature 417(6890):732–735

    Article  CAS  Google Scholar 

  • Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a Neotropical forest. Ecol Res 16(5):859–875

    Article  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104(940):501–528

    Article  Google Scholar 

  • Janzen DH (1980) Citation classic-herbivores and the number of tree species in tropical forests. Cc/Agr Biol Environ (1):10–10

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA 104(3):864–869. doi:10.1073/pnas.0604666104

    Article  CAS  PubMed  Google Scholar 

  • Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D, Solomon A, Wyckoff P (2001) Tree mortality in gap models: application to climate change. Clim Change 51(3–4):509–540. doi:10.1023/A:1012539409854

    Article  Google Scholar 

  • Krankina ON, Harmon ME (1995) Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Pollut 82(1–2):227–238

    Article  CAS  Google Scholar 

  • Kunstler G, Coomes DA, Canham CD (2009) Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. J Ecol 97(4):685–695. doi:10.1111/j.1365-2745.2009.01482.x

    Article  Google Scholar 

  • Li L, Wei SG et al (2008) Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. J Integr Plant Biol 50(9):1140–1150

    Article  PubMed  Google Scholar 

  • Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos 118(4):495–502. doi:10.1111/j.1600-0706.2009.16753.x

    Article  Google Scholar 

  • Lines ER, Coomes DA, Purves DW (2010) Influences of forest structure, climate and species composition on tree mortality across the eastern US. PLoS ONE 5(10). doi: 10.1371/journal.pone.0013212

  • Lombardi F, Cocozza C, Lasserre B, Tognetti R, Marchetti M (2011) Dendrochronological assessment of the time since death of dead wood in an old growth Magellan’s beech forest, Navarino Island (Chile). Aust Ecol 36(3):329–340. doi:10.1111/j.1442-9993.2010.02154.x

    Article  Google Scholar 

  • Lorimer CG, Dahir SE, Nordheim EV (2001) Tree mortality rates and longevity in mature and old-growth hemlock-hardwood forests. J Ecol 89(6):960–971

    Article  Google Scholar 

  • Lu R (1999) Analytical methods of soil agrochemistry. China Agricultural Science and Technology Press, Bei**g

    Google Scholar 

  • Lutz JA, Halpern CB (2006) Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol Monogr 76(2):257–275

    Article  Google Scholar 

  • Maloney PE, Smith TF, Jensen CE, Innes J, Rizzo DM, North MP (2008) Initial tree mortality and insect and pathogen response to fire and thinning restoration treatments in an old-growth mixed-conifer forest of the Sierra Nevada, California. Can J For Res 38(12):3011–3020. doi:10.1139/X08-141

    Article  Google Scholar 

  • Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466(7307):752–U710. doi: 10.1038/Nature09273

    Google Scholar 

  • McCarthy-Neumann S, Kobe RK (2008) Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology 89(7):1883–1892

    Article  PubMed  Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New York

    Google Scholar 

  • Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81(3):429–441

    Article  Google Scholar 

  • Moroni MT, Ryan DAJ (2010) Deadwood abundance in recently harvested and old Nova Scotia hardwood forests. Forestry 83(2):219–227. doi:10.1093/forestry/cpq007

    Article  Google Scholar 

  • Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Supardi NMN, Tan S, Thompson J, Valencia R, Munoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9(5):575–588. doi:10.1111/j.1461-0248.2006.00904.x

    Article  PubMed  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3):691–692

    Article  Google Scholar 

  • Nakashizuka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends Ecol Evol 16(4):205–210. doi:10.1016/S0169-5347(01)02117-6

    Article  PubMed  Google Scholar 

  • Olano JM, Laskurain NA, Escudero A, De La Cruz M (2009) Why and where do adult trees die in a young secondary temperate forest? The role of neighbourhood. Ann For Sci 66(1). doi:10.1051/Forest:2008074

  • Pinheiro J, Bates D (2000) Mixed effects models in S and S-Plus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Primmer SR (2002) In search of a model species for aging research: a study of the life span of tree shrews. J Anti Aging Med 5(2):179–201

    Article  CAS  Google Scholar 

  • Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2009) Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings. Proc R Soc B 276(1676):4197–4205. doi:10.1098/rspb.2009.0921

    Article  PubMed  Google Scholar 

  • Ripely BD (1977) Modeling spatial patterns. J R Stat Soc 39:172–212

    Google Scholar 

  • Runkle JR (2000) Canopy tree turnover in old-growth mesic forests of eastern North America. Ecology 81(2):554–567

    Article  Google Scholar 

  • Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93(5):879–889. doi:10.1111/j.1365-2745.2005.01030.x

    Article  CAS  Google Scholar 

  • Sebkova B, Samonil P, Janik D, Adam D, Kral K, Vrska T, Hort L, Unar P (2011) Spatial and volume patterns of an unmanaged submontane mixed forest in Central Europe: 160 years of spontaneous dynamics. For Ecol Manag 262(5):873–885. doi:10.1016/j.foreco.2011.05.028

    Article  Google Scholar 

  • Slik JWF (2004) El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141(1):114–120. doi:10.1007/s00442-004-1635-y

    Article  CAS  PubMed  Google Scholar 

  • Team RDC (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004) A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecol Monogr 74(4):591–614

    Article  Google Scholar 

  • Wang XG, Hao ZQ, Ye J, Zhang J, Li BH, Yao XL (2008) Spatial pattern of diversity in an old-growth temperate forest in northeastern China. Acta Oecol 33(3):345–354. doi:10.1016/j.actao.2008.01.00S

    Article  Google Scholar 

  • Wang XG, Hao ZQ, Zhang J, Lian JY, Li BH, Ye J, Yao XL (2009a) Tree size distributions in an old-growth temperate forest. Oikos 118(1):25–36. doi:10.1111/j.0030-1299.2008.16598.x

    Article  Google Scholar 

  • Wang Z, Ye WH, Cao HL, Huang ZL, Lian JY, Li L, Wei SG, Sun IF (2009b) Species-topography association in a species-rich subtropical forest of China. Basic Appl Ecol 10(7):648–655. doi:10.1016/j.baae.2009.03.002

    Article  Google Scholar 

  • Wang L, Li B, Ye J, Bai X, Yuan Z (2011) Dynamics of short-term tree mortality in broad-leaved Korean Pine (Pinus koraiensis) mixed forest in the Changbai Mountains. Biodivers Sci 19:260–270

    Article  Google Scholar 

  • Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest. PLoS ONE 7(2). doi:10.1371/journal.pone.0029469

  • Wanhui Y, Honglin C, Zhongliang H, Juyu L, Zhigao W, Lin L, Shiguang W, Zhangming W (2008) Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Acta Phytoecol Sinica 32(2):274–286

    Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant-populations. Trends Ecol Evol 5(11):360–364

    Article  CAS  PubMed  Google Scholar 

  • Woods KD (2000) Dynamics in late-successional hemlock-hardwood forests over three decades. Ecology 81(1):110–126

    Google Scholar 

  • Zhang J, Hao ZQ, Sun IF, Song B, Ye J, Li BH, Wang XG (2009) Density dependence on tree survival in an old-growth temperate forest in northeastern China. Ann For Sci 66(2). doi:10.1051/Forest/2008086

  • Zhang J, Song B, Li BH, Ye J, Wang XG, Hao ZQ (2010) Spatial patterns and associations of six congeneric species in an old-growth temperate forest. Acta Oecol 36(1):29–38. doi:10.1016/j.actao.2009.09.005

    Article  Google Scholar 

  • Zhao DH, Borders B, Wilson M, Rathbun SL (2006) Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest. Ecol Model 196(1–2):90–102. doi:10.1016/j.ecolmodel.2006.02.002

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Wanhui Ye and Juyu Lian for guidance in this study. This study was supported by Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX-EW-Z), National Natural Science Foundation of China (31061160188, 31100312, 31011120470, 31170352), Chinese Forest Biodiversity Monitoring Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Lin Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

About this article

Cite this article

Ma, L., Chen, C., Shen, Y. et al. Determinants of tree survival at local scale in a sub-tropical forest. Ecol Res 29, 69–80 (2014). https://doi.org/10.1007/s11284-013-1100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1100-7

Keywords

Navigation