Log in

Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen, Z. N., Liu, D., Nakano, H., Qing, X., & Zwick, T. (2016). Handbook of antenna technologies. Singapore: Springer.

    Book  Google Scholar 

  2. Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood: Artech House Inc.

    Google Scholar 

  3. Gao, S. S., Luo, Q., & Zhu, F. (2014). Circularly polarized antennas. London: Wiley.

    Book  Google Scholar 

  4. Wu, X. H., & Kishk, A. A. (2010). Analysis and design of substrate integrated waveguide using efficient 2D hybrid method. San Rafael: Morgan and Claypool Publishers.

    Book  Google Scholar 

  5. Kishk, A. (2003). Application of rotated sequential feeding for circular polarization bandwidth enhancement of planar arrays with single-fed DRA elements. In IEEE antennas and propag. society international symposium digest (pp. 664–667).‏

  6. Liu, J., Jackson, D., & Long, Y. (2012). Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Transactions on Antennas and Propagation, 60(1), 20–29.

    Article  Google Scholar 

  7. Zainud-Deen, S. H., Malhat, H. A., El-shalaby, N. A., & Gaber, S. M. (2019). Circular polarization bandwidth reconfigurable high gain planar plasma helical antenna. IEEE Transactions on Plasma Science, 99(1–7), 2019. https://doi.org/10.1109/tps.2019.2931989.

    Article  Google Scholar 

  8. Zaman, A. U., Vukusic, T., Alexanderson, M., & Kildal, P. S. (2013). Design of a simple transition from microstrip to ridge gap waveguide suited for MMIC and antenna integration. IEEE Antennas and Wireless Propagation Letters, 12, 1558–1561.

    Article  Google Scholar 

  9. Sharma, A., Sarkar, A., Biswas, A., & Akhtar, M. J. (2018). Substrate integrated waveguide fed dual-frequency dual-linearly-polarized dielectric resonator antenna. International Journal of Microwave and Wireless Technologies, 10(4), 505–511.

    Article  Google Scholar 

  10. Xu, H., Wang, Y., Roy, L., Abdel-Wahab, W., Liu, J. (2017). Integration of substrate integrated waveguide filter with dielectric resonator antenna. In 2017 IEEE international symposium on antennas and propagation and USNC/URSI national radio science meeting (pp. 1527–1528).‏‏

  11. Sun, Y. X., & Leung, K. W. (2018). Circularly polarized substrate-integrated cylindrical dielectric resonator antenna array for 60 GHz applications. IEEE Antennas and Wireless Propagation Letters, 17(8), 1401–1405.

    Article  Google Scholar 

  12. Sun, X., & Leung, K. W. (2016). Substrate-integrated two-port dual-frequency antenna. IEEE Transactions on Antennas and Propagation, 64(8), 3692–3697.

    Article  MathSciNet  Google Scholar 

  13. Attia, H., & Kishk, A. A. (2017). Wideband self-sustained DRA fed by printed ridge gap waveguide at 60 GHz. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–3).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Malhat, H.A.EA. Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications. Wireless Pers Commun 114, 113–122 (2020). https://doi.org/10.1007/s11277-020-07353-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07353-8

Keywords

Navigation